• Title/Summary/Keyword: 먹는물 처리

Search Result 25, Processing Time 0.021 seconds

Monitoring of Bisphenol A and Nonylphenol in Waterworks System of Seoul, Korea (상수도 계통에서 비스페놀 A와 노닐페놀의 실태조사)

  • Ham, Young-Kook;Oh, Sea-Jong;Kim, Sung-Whan
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.423-433
    • /
    • 2004
  • This study was examined occurrence of bisphenol A (BPA) and nonylphenol (NP) in waterworks system of Seoul, Korea from September 2002 to December 2003. The levels of BPA and NP in Han-river and its tributaries were as followed: Paldang-dam, ND(not detected)${\sim}0.033{\mu}g/L$ and $ND{\sim}0.823{\mu}g/L$; Kyungahn-creek, $ND{\sim}0.659{\mu}g/L$ and $ND{\sim}3.827{\mu}g/L$; Whangsuk-creek, $ND{\sim}0.528{\mu}g/L$ and $ND{\sim}12.724{\mu}g/L$, respectively. In water of 6 intake-station, the contents of NP and BPA were detected $0.122{\sim}2.724{\mu}g/L$, and $ND{\sim}0.260{\mu}g/L$, respectively. In the finished- and tap-water of three drinking water treatment plants (DWTPs) around Whangsuk-creek, BPA was not detected in all samples, while NP was in ppt levels in whole. Through the process of DWTP, also, the removal ratio of NP was above 80% in all this. Therefore, this result was suggested that levels of BPA and NP in waterworks system depended on non-point contaminants and swage treatment plants in the Han-river shed.

Photodegradation of some Organophosphorous Pesticides (일부 유기인계 농약의 광분해성)

  • 민경진;차춘근
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.339-345
    • /
    • 1999
  • The present study was performed to investigate photodegradation rate constants and degradation products of dichlorvos and methidathion by the USEPA method. The two pesticides were very stable in sunlight for 16 days from September 2 to 18, 1998 and humic acid had no sensitizing effect on the photolysis of each pesticide in sunlight. The photolysis rate was fast-est for methidathion, followed by dichlorvos in the presence of UV irradiation. Photodegradation rate constant and half-life of dichlorvos were 0.0208 and 33.3 min, respectively. Photodegradation rate constant and half-life of methidathion were 0.6789 and 1.0min, respectively. The two pesticides were degraded completely in the presence of UV irradiation and UV irradiation with TiO$_2$in about 3 hours. Therefore, it is suggested that UV treatment will be effective for the degradation of pesticides in the process of drinking water purification. In case of dichlorvos and methidathion, UV irradiation with TiO$_2$was more effective for degradation than W irradiation. In order to identify photolysis products, the extracts of degradation products were analyzed by GC/ MS. The mass spectrum of photolysis products of dichlorvos was at m/z 153, those of the photolysis of methidathion were at m/z 198 and 214, respectively. Photolysis products of dichlorvos was Ο, Ο-dimethyl phosphate(DMP), those of methidathion were Ο, Ο-dimethyl phosphorothioate(DMTP) and Ο, Ο-dimethyl phosphorodithioate (DMDTP).

  • PDF

The Effect of Initial pH and Dose of $TiO_2$ on Chloroform Removal in Photocatalytic Process using Compound Parabolic Concentrator Reactor System (CPCs를 이용한 $TiO_2$ 광촉매반응공정에서 초기 pH와 촉매농도가 클로로포름 분해에 미치는 영향)

  • Cho, Sang-Hyun;Cui, Mingcan;Nam, Sang-Geon;Jung, Hee-Suk;Khim, Jee-Hyeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1147-1153
    • /
    • 2010
  • To evaluate the solar photocatalytic degradation efficiency of chloroform in a real solar-light driven compound parabolic concentrators (CPCs) system, $TiO_2$ was irradiated with a metalhalide lamp (1000 W), which has a similar wavelength to sunlight. The results were applied to a pilot scale reactor system by converting the data to a standardized illumination time. In addition, the effects of initial pH and the $TiO_2$ dose on the photocatalytic degradation of chloroform were investigated. The results were compared with the specific surface area (S.S.A) and particle size of $TiO_2$, which changed according to the pH, to determine the relationship between the S.S.A, particle size and the photocatalytic degradation of chloroform. The experiment was carried out at pH 4~7 using 0.1, 0.2, 0.4 g/L of $TiO_2$. The particle size and specific surface area of $TiO_2$ were measured. There was no significant difference between the variables. However, pH affects the particle size distribution and specific surface area of $TiO_2$. Inaddition, the activation of a photocatalyst did not show a linear relationship with the specific surface area of $TiO_2$ in the photocatalytic degradation of chloroform.

Removal of Perchlorate from Salt Water Using Microorganisms (미생물을 이용한 염수의 퍼클로레이트 제거)

  • Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1294-1303
    • /
    • 2019
  • Perchlorate is an anionic pollutant that is very soluble and stable in water. It has been detected not only in soil/ground water but also in surface water, drinking water, food, fish, and crops. Perchlorate inhibits iodine uptake by the thyroid gland and reduces production of thyroid hormones that are primarily responsible for regulation of metabolism. Although various technologies have been developed to remove perchlorate from the environment, biodegradation is the method of choice since it is economical and environmentally friendly. However there is limited information on perchlorate biodegradation in salt environment such as salt water. Therefore this paper reviews biodegradation of perchlorate in salt water and related microorganisms. Most biodegradation research has employed heterotrophic perchlorate removal using organic compounds such as acetate as electron donors. Biodegradation research has focused on perchlorate removal from spent brine generated by ion exchange technology that is primarily employed to clean up perchlorate-contaminated ground water. Continuous removal of perchlorate at up to 10% NaCl was shown when bioreactors were inoculated with enriched salt-tolerant perchlorate-reducing bacteria. However the reactors did not show long-term stable removal of perchlorate. Microorganisms belonging to ${\beta}$- and ${\gamma}$-Proteobacteria were dominant in bioreactors used to remove perchlorate from salt water. This review will help our understanding of perchlorate removal from salt water to develop a decent biotechnology for the process.

A Study on the Stability and Sludge Energy Efficiency Evaluation of Torrefied Wood Flour Natural Material Based Coagulant (반탄화목분 천연재료 혼합응집제의 안정성 및 슬러지 에너지화 가능성 평가에 관한 연구)

  • PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.271-282
    • /
    • 2020
  • Sewage treatment plants are social infrastructure of cities. The sewage distribution rate in Korea is reaching 94% based on the sewage statistics based in the year of 2017. In Korean sewage treatment plants, use of PAC (Poly Aluminum Chloride) accounts for 58%. It contains a large amount of impurities (heavy metal) according to the quality standards, however, there have been insufficient efforts to reinforce the standards or technically improve the quality, which resulted in secondary pollution problems from injecting excessive coagulant. Also, the increase in the use of chemicals is leading to the increases in the annual amount of sewage sludge generated in 2017 and the need to reuse sludge. As such, this study aims to verify the possibility of reusing sludge by evaluating the stability of heavy metals based on the injection of coagulant mixture during water treatment which uses the torrefield wood powder and natural materials, and evaluating the sedimentation and heating value of sewage sludge. As a result of analyzing heavy metals (Cr, Fe, Zn, Cu, Cd, As, Pb, and Ni) from the coagulant mixture and PAC (10%), Cr, Cd, Pb, Ni, and Hg were not detected. As for Zn, while its concentration notified in the quality standards for drinking water is 3 mg/L, only a small amount of 0.007 mg/L was detected in the coagulant mixture. Maximum amounts of over double amounts of Fe, Cu, and As were found with PAC (10%) compared to the coagulant mixture. Also, an analysis of sludge sedimentation found that the coagulant mixture showed a better performance of up to double the speed of the conventional coagulant, PAC (10%). The dry-basis lower heating value of sewage sludge produced by injecting the coagulant mixture was 3,378 kcal/kg, while that of sewage sludge generated due to PAC (10%) was 3,171 kcal/kg; although both coagulants met the requirements to be used as auxiliary fuel at thermal power plants, the coagulant mixture developed in this study could secure heating values 200 kal/kg higher than the counterpart. Therefore, utilization of the coagulant mixture for water treatment rather than PAC (10%) is expected to be more environmentally stable and effective, as it helps generating sludge with better stability against heavy metals, having a faster sludge sedimentation, and higher heating value.