• Title/Summary/Keyword: 머신비전

Search Result 180, Processing Time 0.021 seconds

A Study on Performance Improvement of Whirling Machines (Whirling machine의 성능 개선을 위한 연구)

  • Lee Jung-Ki;Yang Woo-suk;Son Jea-seok;Han Hui-duck;Kim Han-soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1416-1429
    • /
    • 2005
  • In order to meet the increasing competitive pressures coupled with higher demands for component quality, whirling machines have been at the cutting edge of the automobile industry for more than 25 years. The hard whirling process can save on machining time and operation elimination. Hard whirling is done dry, without coolant. The chips carry away nearly all of the heat during cutting, leaving the workpiece cool and minimizing any thermal geometry variations. The surface finish and profile accuracy are close to grinding quality. Whirling machines usually consist of four major parts; 1) loading system that requires the necessary axial speeds, 2) head stock that needs high precision clamping and positioning system at the chuck and tailstock, 3) whirling unit that demands the high cutting speeds and cutting power fer cutting deep thread profiles and 4) unloading system that requires an easy workpiece unloading. Also, capabilities of the whirling machine can be improved by attaching a vision system to the machine. Most of whirling machines in Korean automobile industry are imported from the Leistritz company, Germany and the Hasegawa company, Japan. Tn this paper, a basic research will be performed to improve and enhance the existing whirling machines. Finally, a new Korean whirling machine will be proposed and developed.

A Study on the Multi-Laser Image Tracking Method using the Latest Approach Angle (최근접 각도를 이용한 복수 레이저 영상 추적 방법 연구)

  • Jo, Jin-Pyo;Ko, Ho-Jeong;Kim, Jeong-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.2
    • /
    • pp.37-43
    • /
    • 2020
  • The paper proposed the method of calculating the latest approach angle that can reliably recognize multiple laser images even with the change in separation distance between screen and laser launch device. This method recognizes the angle of the laser pattern angle by using the distance of the laser pattern angle, and the angle extraction of the laser detects the laser image from the acquired image using the labeling algorithm, and performs the huff conversion to extract the angle of the straight line. The distance of the reference angle and angle of the laser image extracted using Euclidean distance among similarity scales is calculated, and the furnace is recognized using the calculated distance result value. Experiments with changing the separation distance to "200 cm to 400 cm" showed 100% recognition of individual strands at all separation distances. The experiment confirmed the reliability of the proposed method.

Intelligent Pattern Matching Based on Geometric Features for Machine Vision Inspection (머신비전검사를 위한 기하학적 특징 기반 지능 패턴 정합)

  • Moon Soon-Hwan;Kim Gyung-Bum;Kim Tae-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.6
    • /
    • pp.1-8
    • /
    • 2006
  • This paper presents an intelligent pattern matching method that can be used to acquire the reliable calibration data for automatic PCB pattern inspection. The inaccurate calibration data is often acquired by geometric pattern variations and selecting an inappropriate model manual. It makes low the confidence of inspection and also the inspection processing time has been delayed. In this paper, the geometric features of PCB patterns are utilized to calculate the accurate calibration data. An appropriate model is selected automatically based on the geometric features, and then the calibration data to be invariant to the geometric variations(translation, rotation, scaling) is calculated. The method can save the inspection time unnecessary by eliminating the need for manual model selection. As the result, it makes a fast, accurate and reliable inspection of PCB patterns.

  • PDF

Local Dehazing Method using a Haziness Degree Evaluator (흐릿함 농도 평가기를 이용한 국부적 안개 제거 방법)

  • Lee, Seungmin;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1477-1482
    • /
    • 2022
  • Haze is a local weather phenomenon in which very small droplets float in the atmosphere, and the amount and characteristics of haze may vary depending on the region. In particular, these haze reduce visibility, which can cause air traffic interference and vehicle traffic accidents, and degrade the quality of security CCTVs and so on. Therefore, in the past 10 years, research on haze removal has been actively conducted to reduce damage caused by haze. In this study, local haze removal is performed by weight generation using a haziness degree evaluator to adaptively respond to haze-free, homogeneous haze, and non-homogeneous haze cases. And the proposed method improves the limitations of the existing static haze removal method, which assumes that there is haze in the input image and removes the haze. We also demonstrate the superiority of the proposed method through quantitative and qualitative performance evaluations with benchmark algorithms.

A Study on Image Creation and Modification Techniques Using Generative Adversarial Neural Networks (생성적 적대 신경망을 활용한 부분 위변조 이미지 생성에 관한 연구)

  • Song, Seong-Heon;Choi, Bong-Jun;Moon, M-Ikyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.291-298
    • /
    • 2022
  • A generative adversarial network (GAN) is a network in which two internal neural networks (generative network and discriminant network) learn while competing with each other. The generator creates an image close to reality, and the delimiter is programmed to better discriminate the image of the constructor. This technology is being used in various ways to create, transform, and restore the entire image X into another image Y. This paper describes a method that can be forged into another object naturally, after extracting only a partial image from the original image. First, a new image is created through the previously trained DCGAN model, after extracting only a partial image from the original image. The original image goes through a process of naturally combining with, after re-styling it to match the texture and size of the original image using the overall style transfer technique. Through this study, the user can naturally add/transform the desired object image to a specific part of the original image, so it can be used as another field of application for creating fake images.

Study on the Direction of Universal Big Data and Big Data Education-Based on the Survey of Big Data Experts (보편적 빅데이터와 빅데이터 교육의 방향성 연구 - 빅데이터 전문가의 인식 조사를 기반으로)

  • Park, Youn-Soo;Lee, Su-Jin
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.2
    • /
    • pp.201-214
    • /
    • 2020
  • Big data is gradually expanding in diverse fields, with changing the data-related legislation. Moreover it would be interest in big data education. However, it requires a high level of knowledge and skills in order to utilize Big Data and it takes a long time for education spends a lot of money for training. We study that in order to define Universal Big Data used to the industrial field in a wide range. As a result, we make the paradigm for Big Data education for college students. We survey to the professional the Big Data definition and the Big Data perception. According to the survey, the Big Data related-professional recognize that is a wider definition than Computer Science Big Data is. Also they recognize that the Big Data Processing dose not be required Big Data Processing Frameworks or High Performance Computers. This means that in order to educate Big Data, it is necessary to focus on the analysis methods and application methods of Universal Big Data rather than computer science (Engineering) knowledge and skills. Based on the our research, we propose the Universal Big Data education on the new paradigm.

Adaptive Thresholding Method Using Zone Searching Based on Representative Points for Improving the Performance of LCD Defect Detection (LCD 결함 검출 성능 개선을 위한 대표점 기반의 영역 탐색을 이용한 적응적 이진화 기법)

  • Kim, Jin-Uk;Ko, Yun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.689-699
    • /
    • 2016
  • As the demand for LCD increases, the importance of inspection equipment for improving the efficiency of LCD production is continuously emphasized. The pattern inspection apparatus is one that detects minute defects of pattern quickly using optical equipment such as line scan camera. This pattern inspection apparatus makes a decision on whether a pixel is a defect or not using a single threshold value in order to meet constraint of real time inspection. However, a method that uses an adaptive thresholding scheme with different threshold values according to characteristics of each region in a pattern can greatly improve the performance of defect detection. To apply this adaptive thresholding scheme it has to be known that a certain pixel to be inspected belongs to which region. Therefore, this paper proposes a region matching algorithm that recognizes the region of each pixel to be inspected. The proposed algorithm is based on the pattern matching scheme with the consideration of real time constraint of machine vision and implemented through GPGPU in order to be applied to a practical system. Simulation results show that the proposed method not only satisfies the requirement for processing time of practical system but also improves the performance of defect detection.

Comparison of Artificial Intelligence Multitask Performance using Object Detection and Foreground Image (물체탐색과 전경영상을 이용한 인공지능 멀티태스크 성능 비교)

  • Jeong, Min Hyuk;Kim, Sang-Kyun;Lee, Jin Young;Choo, Hyon-Gon;Lee, HeeKyung;Cheong, Won-Sik
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.308-317
    • /
    • 2022
  • Researches are underway to efficiently reduce the size of video data transmitted and stored in the image analysis process using deep learning-based machine vision technology. MPEG (Moving Picture Expert Group) has newly established a standardization project called VCM (Video Coding for Machine) and is conducting research on video encoding for machines rather than video encoding for humans. We are researching a multitask that performs various tasks with one image input. The proposed pipeline does not perform all object detection of each task that should precede object detection, but precedes it only once and uses the result as an input for each task. In this paper, we propose a pipeline for efficient multitasking and perform comparative experiments on compression efficiency, execution time, and result accuracy of the input image to check the efficiency. As a result of the experiment, the capacity of the input image decreased by more than 97.5%, while the accuracy of the result decreased slightly, confirming the possibility of efficient multitasking.

The Mirror-based real-time dynamic projection mapping design and dynamic object detection system research (미러 방식의 실시간 동적 프로젝션 매핑 설계 및 동적 사물 검출 시스템 연구)

  • Soe-Young Ahn;Bum-Suk Seo;Sung Dae Hong
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.85-91
    • /
    • 2024
  • In this paper, we studied projection mapping, which is being utilized as a digital canvas beyond space and time for theme parks, mega events, and exhibition performances. Since the existing projection technology used for fixed objects has the limitation that it is difficult to map moving objects in terms of utilization, it is urgent to develop a technology that can track and map moving objects and a real-time dynamic projection mapping system based on dynamically moving objects so that it can respond to various markets such as performances, exhibitions, and theme parks. In this paper, we propose a system that can track real-time objects in real time and eliminate the delay phenomenon by developing hardware and performing high-speed image processing. Specifically, we develop a real-time object image analysis and projection focusing control unit, an integrated operating system for a real-time object tracking system, and an image processing library for projection mapping. This research is expected to have a wide range of applications in the technology-intensive industry that utilizes real-time vision machine-based detection technology, as well as in the industry where cutting-edge science and technology are converged and produced.

Development of Deep Learning Structure to Improve Quality of Polygonal Containers (다각형 용기의 품질 향상을 위한 딥러닝 구조 개발)

  • Yoon, Suk-Moon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.493-500
    • /
    • 2021
  • In this paper, we propose the development of deep learning structure to improve quality of polygonal containers. The deep learning structure consists of a convolution layer, a bottleneck layer, a fully connect layer, and a softmax layer. The convolution layer is a layer that obtains a feature image by performing a convolution 3x3 operation on the input image or the feature image of the previous layer with several feature filters. The bottleneck layer selects only the optimal features among the features on the feature image extracted through the convolution layer, reduces the channel to a convolution 1x1 ReLU, and performs a convolution 3x3 ReLU. The global average pooling operation performed after going through the bottleneck layer reduces the size of the feature image by selecting only the optimal features among the features of the feature image extracted through the convolution layer. The fully connect layer outputs the output data through 6 fully connect layers. The softmax layer multiplies and multiplies the value between the value of the input layer node and the target node to be calculated, and converts it into a value between 0 and 1 through an activation function. After the learning is completed, the recognition process classifies non-circular glass bottles by performing image acquisition using a camera, measuring position detection, and non-circular glass bottle classification using deep learning as in the learning process. In order to evaluate the performance of the deep learning structure to improve quality of polygonal containers, as a result of an experiment at an authorized testing institute, it was calculated to be at the same level as the world's highest level with 99% good/defective discrimination accuracy. Inspection time averaged 1.7 seconds, which was calculated within the operating time standards of production processes using non-circular machine vision systems. Therefore, the effectiveness of the performance of the deep learning structure to improve quality of polygonal containers proposed in this paper was proven.