• Title/Summary/Keyword: 머니퓰레이터 설계

Search Result 7, Processing Time 0.017 seconds

Development of a Safe Manipulator for Positioning a Kiosk Panel (키오스크 패널의 위치 조절을 위한 안전 머니퓰레이터 개발)

  • Kim, Tae-Keun;Kim, Byeong-Sang;Song, Jae-Bok;Kim, Hyo-Joong;Park, Chang-Woo;Kwon, Yong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.73-79
    • /
    • 2012
  • Kiosks are widely used in drive-thru systems in parking lots or on the highway to provide various services to drivers. However, the driver must stop at an exact location to access the kiosk, since its panel is fixed. In order to improve the kiosk accessibility, in this study we developed a manipulator that can adjust the position of the kiosk panel. The number of active joints was minimized to lower the cost, whereas a parallelogram mechanism and passive joints were adopted to increase its convenience for the users. Furthermore, a safety mechanism using springs and a cam was designed to ensure the safety of the user in the case of an emergency. The performance of the position controller and the safety mechanism were verified through various tests. In addition, the proposed collision reaction strategy improved the safety performance of the kiosk system.

A Study on Robust Controller Design of Robotic Manipulator Using Direct Adaptive Control (직접 적응제어방식에 의한 로봇 머니퓰레이터의 견실한 제어기 설계에 관한 연구)

  • Han, Sung-Hyun;Park, Han-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.559-559
    • /
    • 1989
  • This paper deals with the robust controller design of robot manipulator to track a desired trajectory in spite of the presence of unmodelled dynamics in cause of nonlinearity and parameter uncertainty. The approach follwed in this paper is based on model reference adaptive control technique and convergence on hyperstability theory but it does away with the assumption that process is characterized by a linear model remaining time invariant during adaptation process. The performance of controller is demonstrated by computed simulation about position and speed control of six link manipulator in case of disturbance and payload variation.

A Study on Robust Controller Design of Robotic Manipulator Using Direct Adaptive Control (직접 적응제어방식에 의한 로봇 머니퓰레이터의 견실한 제어기 설계에 관한 연구)

  • Han, Sung-Hyun;Park, Han-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.59-69
    • /
    • 1989
  • This paper deals with the robust controller design of robot manipulator to track a desired trajectory in spite of the presence of unmodelled dynamics in cause of nonlinearity and parameter uncertainty. The approach follwed in this paper is based on model reference adaptive control technique and convergence on hyperstability theory but it does away with the assumption that process is characterized by a linear model remaining time invariant during adaptation process. The performance of controller is demonstrated by computed simulation about position and speed control of six link manipulator in case of disturbance and payload variation.

  • PDF

Analysis and Design of the Dual Arm Manipulator for Rescue Robot (구난 로봇용 양팔 머니퓰레이터 진동 해석 및 설계)

  • Park, Dong Il;Park, Chanhun;Kim, Doohyung;Kyung, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Dual arm manipulators have been developed for the entertainment purpose such as humanoid type or the industrial application such as automatic assembly. Nowadays, there are some issues for applying the dual arm robot system into the various fields. Especially, robots can substitute human and perform the dangerous activity such as search and rescue in the battle field or disaster. In the paper, the dual arm manipulator which can be adapted to the rescue robot with the mobile platform was developed. The kinematic design was proposed for the rescue activity and the required specification was determined through the kinematic analysis and the dynamic analysis in the various conditions. The proposed dual arm manipulator was manufactured based on the vibration analysis result and its performance was proved by the experiment.

The Development of the Manipulator and End-effector of Automated Pavement Crack Sealing Machine and Movement Test (도로면 크랙실링 자동화 장비의 모체 제작 및 구동 실험)

  • Lee, Jeong-Ho;Lee, Won-Jae;Yoo, Hyun-Seok;Kim, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.377-386
    • /
    • 2012
  • Crack sealing has been widely used in the pavement maintenance due to its advantage of repairing the cracks at the preliminary stages. However, it has been analyzed that the crack sealing work process is dangerous and labor intensive. Moreover, quality and productivity of crack sealing work are highly depended on labor experience and skills. Therefore, various crack sealing machines have been researched but revealed many limitations in practical application. This research analyses conventional crack sealing work process and previously developed crack sealing machines in order to develop an automated pavement crack sealing machine which can be practically and widely applied in the construction fields. This paper develops the previously proposed conceptual design by drawing detailed designs and fabricating the hardware(manipulator and end-effector) of the automated pavement crack sealing machine. The crack sealing machine suggested in this paper overcomes limitations of existing crack sealing machines and designed to meet the domestic road conditions and regulations. It is expected that automating the conventional crack sealing method contributes to the improvement of quality, economy and reduce accidents.

Development of Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇 개발)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.123-130
    • /
    • 2014
  • Oriental melon (Cucumis melo var. makuwa) should be cultivated on the soil and be harvested. It is difficult to find because it is covered with leaves, and furthermore, it is very hard to grip it due to its climbing stems. This study developed and tested oriental melon harvesting robots such as an end-effector, manipulator and identification device. The end effector is divided into a gripper for harvest and a cutter for stems. In addition, it was designed to control the gripping and cutting forces so that the gripper could move four fingers at the same time and the cutter could move back and forth. The manipulator was designed to realize a 4-axis manipulator structure to combine orthogonal coordinate-type and shuttle-type manipulators with L-R type model to rotate based on the central axis. With regard to the identification device, oriental melon was identified using the primary identification global view camera device and secondary identification local view camera device and selected in the prediction of the sugar content or maturity. As a result of the performance test using this device, the average harvest time was 18.2 sec/ea, average pick-up rate was 91.4%, average damage rate was 8.2% and average sorting rate was 72.6%.