• Title/Summary/Keyword: 맵 빌딩 알고리즘

Search Result 8, Processing Time 0.022 seconds

An Optimal Traveling Algorithm Based on Map Building for Mobile Robots (이동로봇의 맵 빌딩 기반 최적 주행 알고리즘)

  • Kim, Jong-Hwa;Kim, Jin-Kyu;Lim, Jae-Kwon;Han, Seong-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.192-199
    • /
    • 2008
  • In order for a mobile robot to move under unknown or uncertain environment. it is very important to collect environmental information. This paper suggests a traveling algorithm which leads to the map building algorithm and the $A^*$ algorithm under the assumption that environmental information should already be collected. In order to apply the proposed traveling algorithm to a real mobile robot. this paper additionally discusses a path amendment algorithm. For the purpose of verifying the proposed algorithms, several simulations are executed based on a UI host program-based simulation interface and an experiment is executed using a mobile robot under a real unknown environment.

An Implementation of a Map Building Algorithm for Efficient Traveling of Mobile Robots (이동로봇의 효율적인 주행을 위한 맵 빌딩 알고리즘의 구현)

  • Kim, Jong-Hwa;Kim, Jin-Kyu;Lim, Jae-Kwon;Han, Seong-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.184-191
    • /
    • 2008
  • In order for a mobile robot to move under unknown or uncertain environment, it must have an environmental information. In collecting environmental information, the mobile robot can use various sensors. In case of using ultrasonic sensors to collect an environmental information, it is able to comprise a low-cost environmental recognition system compared with using other sensors such as vision and laser range-finder. This paper proposes a map building algorithm which can collect environmental information using ultrasonic sensors. And also this paper suggests a traveling algorithm using environmental information which leads to the map building algorithm. In order to accomplish the proposed traveling algorithm, this paper additionally discusses a position revision algorithm.

An Implementation of a Mobile Robot Based on Map Building and Traveling Algorithm (맵 빌딩과 주행 알고리즘 기반의 이동로봇 구현)

  • Kim, Jong-Hwa;Kim, Jin-Kyu;Lim, Jae-Kwon;Han, Seong-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.351-358
    • /
    • 2008
  • This paper introduces a map building algorithm which can collect environmental information using ultrasonic sensors. And also this paper discusses a traveling algorithm using environmental information which leads to the map building algorithm. In order to accomplish the proposed traveling algorithm, this paper additionally discusses a path revision algorithm. For verifying the proposed algorithms, several experiments are executed using a mobile robot physically designed in this paper. The conclusion is that the proposed algorithm is very effective and is applicable to mobile robots especially requiring a low-cost environmental information.

Vision-based Mobile Robot Localization and Mapping using fisheye Lens (어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑)

  • Lee Jong-Shill;Min Hong-Ki;Hong Seung-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.256-262
    • /
    • 2004
  • A key component of an autonomous mobile robot is to localize itself and build a map of the environment simultaneously. In this paper, we propose a vision-based localization and mapping algorithm of mobile robot using fisheye lens. To acquire high-level features with scale invariance, a camera with fisheye lens facing toward to ceiling is attached to the robot. These features are used in mP building and localization. As a preprocessing, input image from fisheye lens is calibrated to remove radial distortion and then labeling and convex hull techniques are used to segment ceiling and wall region for the calibrated image. At the initial map building process, features we calculated for each segmented region and stored in map database. Features are continuously calculated for sequential input images and matched to the map. n some features are not matched, those features are added to the map. This map matching and updating process is continued until map building process is finished, Localization is used in map building process and searching the location of the robot on the map. The calculated features at the position of the robot are matched to the existing map to estimate the real position of the robot, and map building database is updated at the same time. By the proposed method, the elapsed time for map building is within 2 minutes for 50㎡ region, the positioning accuracy is ±13cm and the error about the positioning angle of the robot is ±3 degree for localization.

  • PDF

Mobile Robot Localization and Mapping using Scale-Invariant Features (스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑)

  • Lee, Jong-Shill;Shen, Dong-Fan;Kwon, Oh-Sang;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.7-18
    • /
    • 2005
  • A key component of an autonomous mobile robot is to localize itself accurately and build a map of the environment simultaneously. In this paper, we propose a vision-based mobile robot localization and mapping algorithm using scale-invariant features. A camera with fisheye lens facing toward to ceiling is attached to the robot to acquire high-level features with scale invariance. These features are used in map building and localization process. As pre-processing, input images from fisheye lens are calibrated to remove radial distortion then labeling and convex hull techniques are used to segment ceiling region from wall region. At initial map building process, features are calculated for segmented regions and stored in map database. Features are continuously calculated from sequential input images and matched against existing map until map building process is finished. If features are not matched, they are added to the existing map. Localization is done simultaneously with feature matching at map building process. Localization. is performed when features are matched with existing map and map building database is updated at same time. The proposed method can perform a map building in 2 minutes on $50m^2$ area. The positioning accuracy is ${\pm}13cm$, the average error on robot angle with the positioning is ${\pm}3$ degree.

  • PDF

맵-빌딩을 이용한 사족 로봇의 장애물 회피

  • 고환규;유창범;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.277-277
    • /
    • 2004
  • 로봇의 실시간 장애물 회피 방법은 연구되어 왔고 실행되어 왔다. 이러한 방법을 vector field histogram(VFH)라 하며 이러한 방법은 알려져 있지 않는 장애물의 발견과 장애물과의 충돌을 피하는 동시에 목표점으로의 로봇의 이동을 위한 알고리즘이다. The vector field histogram(VFH)방법은 world model로 이차원 Cartesian histogram grid를 이용하였다. VFH 방법은 Vehicle을 원하는 데로 컨트롤하기 위한 과정으로 두 단계 데이터 줄이는 과정이다. Histogram grid 의 첫 번째 단계는 로봇의 순간위치를 구성하기 위한 일 차원 polar histogram에 포함된 각 섹터의 값은 polar obstacle density(POD)로 방향을 표시한다.(중략)

  • PDF

Indoor 3D Map Building using the Sinusoidal Flight Trajectory of a UAV (UAV의 정현파 궤적 알고리즘을 이용한 3차원 실내 맵빌딩)

  • Hwang, Yo-Seop;Choi, Won-Suck;Woo, Chang-Jun;Wang, Zhi-Tao;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.465-470
    • /
    • 2015
  • This paper proposes a robust 3D mapping system for a UAV (Unmanned Aerial Vehicle) that carries a LRF (Laser Range Finder) using the sinusoidal trajectory algorithm. In the case of previous 3D mapping research, the UAV usually takes off vertically and flights up and down while the LRF is measuring horizontally. In such cases, the measuring range is limited and it takes a long time to do mapping. By using the sinusoidal trajectory algorithm proposed in this research, the 3D mapping can be time-efficient and the measuring range can be widened. The 3D mapping experiments have been done to evaluate the performance of the sinusoidal trajectory algorithm by scanning indoor walls.

Visible Height Based Occlusion Area Detection in True Orthophoto Generation (엄밀 정사영상 제작을 위한 가시고도 기반의 폐색영역 탐지)

  • Youn, Junhee;Kim, Gi Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.417-422
    • /
    • 2008
  • With standard orthorectification algorithms, one can produce unacceptable structure duplication in the orthophoto due to the double projection. Because of the abrupt height differences, such structure duplication is a frequently occurred phenomenon in the dense urban area which includes multi-history buildings. Therefore, occlusion area detection especially for the urban area is a critical issue in generation of true orthophoto. This paper deals with occlusion area detection with visible height based approach from aerial imagery and LiDAR. In order to accomplish this, a grid format DSM is produced from the point clouds of LiDAR. Next, visible height based algorithm is proposed to detect the occlusion area for each camera exposure station with DSM. Finally, generation of true orthophoto is presented with DSM and previously produced occlusion maps. The proposed algorithms are applied in the Purdue campus, Indiana, USA.