국제적 수준으로 성장한 한국의 영화 시장 환경은 더욱 타당한 자료 분석에 근거한 의사 결정 수단을 필요로 하게 되었다. 또한 발전된 정보 환경으로 인해 실시간으로 생성되는 대규모 데이터를 신속히 처리하고 분석하여 보다 정밀한 결과를 예측할 수 있어야 한다. 특히 전처리 작업은 정보 분석 과정 중 가장 많은 시간이 소요 되므로 대규모 데이터 기반 분석 환경에서도 합리적인 시간 내에 처리할 수 있어야 한다. 본 논문에서는 영화 흥행 예측을 위한 대용량 데이터 전처리 방법을 연구하였다. 영화 흥행 데이터의 특성을 분석해 전처리의 각 유형별 처리 방법을 설정했으며 하둡 기반 맵리듀스 프레임워크를 사용하는 방법을 사용하였다. 실험 결과 빅데이터 기법을 사용한 전처리가 기존의 방법보다 더 좋은 수행 결과를 보이는 것을 확인하였다.
다양한 센서를 내장하고 고품질의 무선 네트워크 통신 기능을 탑재한 이동 장치의 보급이 확대됨에 따라 다양한 서비스 환경에서 이동 장치로부터 생성되는 시공간 데이터 량도 빠르게 증가하고 있다. 이와 같이 실시간 특성을 갖는 대량의 공간 데이터 스트림을 처리하기 위한 기존의 연구에서 하둡 기반의 공간 빅 데이터 시스템은 일괄 처리 방식의 플랫폼으로 공간 데이터 스트림에 대한 실시간 서비스에 적용하기에는 매우 어렵다. 이에 본 논문에서는 맵리듀스 온라인 프레임워크를 확장하여 연속적으로 입력되는 공간 데이터 스트림에 대한 실시간 질의 처리를 지원하고, 질의 처리 과정에서 야기될 수 있는 부하 문제를 효과적으로 분산하는 부하 관리 기법을 제안한다. 제안 기법에서는 공간 분할 영역을 기반으로 입력 데이터의 유입율과 부하율을 이용하여 노드들에 대해 동적으로 부하를 분산하는 기법을 제시하였다. 실험에서는 특정 공간 영역에서의 부하 관리가 요구될 때 해당 영역에서의 공간 데이터 스트림을 공유하는 자원들에게 분배함으로써 효과적인 질의 처리를 지원할 수 있음을 보인다.
최근 스마트폰의 폭발적인 보급, IoT와 클라우드 컴퓨팅 기술의 고도화, 그리고 IoT 디바이스의 보편화로 대용량 스트리밍 센싱데이터가 출현하였다. 또한 이를 기반으로 데이터의 공유와 매쉬업 통해 새로운 데이터의 가치를 창출하기 위한 요구사항의 증대로 대용량 스트리밍 센싱데이터 환경에서 시맨틱웹 기술과의 접목에 관한 연구가 활발히 진행되고 있다. 하지만 데이터의 대용량성 스트리밍성으로 인해 새로운 지식을 도출하기 위한 지식 추론분야에서 많은 이슈들에 직면하고 있다. 이러한 배경하에, 본 논문에서는 IoT 환경에서 발생하는 대용량 스트리밍 센싱데이터를 시맨틱웹 기술로 처리하여 서비스하기 위해 RDFS 규칙기반 병렬추론 기법을 제시한다. 제안된 기법에서는 기존의 규칙추론 알고리즘인 Rete 알고리즘을 하둡프레임워크 맵리듀스를 통해 병렬로 수행하고, 공용 스토리지로서 하둡 데이터베이스인 HBase를 사용하여 데이터를 공유한다. 이를 위한 시스템을 구현하고, 대용량 스트리밍 센싱데이터인 기상청 AWS 관측데이터를 이용하여 제시된 기법에 대한 성능평가를 진행하고, 이를 입증한다.
효율적인 빈발 패턴 알고리즘은 연관 규칙 마이닝이나 융복합을 위한 마이닝 과정에서 필수적인 요소이며 많은 활용성을 가지고 있다. 패턴 마이닝을 위한 많은 모델들이 빈발 패턴에 관한 정보를 추출하여 FP-트리를 이용하여 저장하고 있다. 본 논문에서는 항목들의 무게중심을 이용한 새로운 빈발 패턴 알고리즘(CAWFP-Growth)을 제안하여 항목들이 가지는 가중치와 빈도수를 같이 고려하여 항목간의 중심을 계산하여 기존의 FP-Growth 알고리즘의 효율성을 향상시킨다. 제안한 방법은 하향 폐쇄의 성질을 유지하기 위한 기존의 전역적 최대치 가중치 지지도를 필요로 하지 않기 때문에 자연히 빈발 패턴의 탐색시간이 줄어들고 정보의 손실을 줄일 수 있다. 실험결과를 통하여 제안된 알고리즘이 기존의 동적가중치를 이용하는 다른 방법과 비교해볼 때, 항목들의 무게중심이 빈발패턴의 정확한 정보를 유지하고 FP-트리의 처리시간을 줄여주기 때문에 제안한 방법의 중요성을 보이고 있다 또한 가상 분산모드에서 맵리듀스 프레임을 기반으로 빅데이터를 모델링하고 향후 완전분산 모드에서 제안한 알고리즘의 모델링이 필요하다.
K-최근접 이웃 연결(KNN 연결) 알고리즘은 기계학습에서 매우 효과적인 방법으로, 작은 데이터군에 대해서 널리 사용되어 왔다. 데이터의 수가 증가함에 따라, 단일 컴퓨터에서는 메모리와 수행시간의 제약으로 실제적인 응용프로그램에서는 실행하기에 적합하지 못하였다. 최근에는 대규모 데이터 처리를 위해서, 많은 수의 컴퓨터로 이루어진 클러스터에서 실행될 수 있는 맵리듀스 (MapReduce)로 알려진 알고리즘이 널리 사용되고 있다. 하둡은 맵리듀스 알고리즘을 구현한 프레임워크이지만 스파크라고 하는 새로운 프레임워크에 의하여 그 성능이 월등히 개선되었다. 본 논문에서는, 스파크에 기반하여 구현된 KNN 연결 알고리즘을 제안하였으며, 이는 인메모리(In-Memory) 연산 기능의 장점으로 하둡보다 빠르고 보다 효율적일 것으로 기대한다. 실험을 통하여, 수행시간에 영향을 주는 요소들에 관하여 조사하였으며, 제안한 접근 방식의 우수성과 효율성을 확인하였다.
음원 서비스의 주요 기능 중 하나인 내용 기반 검색을 위해 음원의 지문을 채취하여 데이타베이스에 저장하고 색인하여 검색에 활용하는 기법이 널리 사용되고 있다. 그런데 지속적으로 추가되는 신규 음원의 지문이 기존의 데이타베이스에 계속 삽입되면 공간 효율 및 음원 검색 성능의 저하가 점차 초래되는 문제점이 있다. 따라서 시스템 운용 비용의 증가를 가져오는 주기적인 데이터 베이스 재구성 없이 효율적인 음원 데이타베이스의 확장을 지원하는 기법이 요구된다. 본 논문에서는 샤잠의 지문 채취 알고리즘을 기반으로 클러스터 컴퓨팅 환경에서 맵리듀스 및 NoSQL 데이타베이스를 사용하여 이러한 문제를 해결하는 내용 기반 음원 검색 시스템의 설계를 제시하고 실제 음원 데이터를 이용한 다양한 실험을 통해 그 성능을 평가한다.
거대한 데이터로부터 가치 있는 정보를 추출해 내는 빅데이터 기술의 필요성은 나날이 커지고 있다. 빅데이터 분석을 위해 사용되는 하둡 시스템은 맵리듀스를 통해 데이터를 처리하였으나, 맵리듀스 프레임워크는 코드 재사용성의 한계, 질의 최적화 기술의 부재 등의 단점을 보인다. 이를 극복하기 위해 SQL-on-Hadoop이라 불리는 하둡 기반의 SQL 질의 처리 기술이 주목받고 있다. SQL-on-Hadoop 기술 중 타조(Tajo)는 국내 개발진이 주축이 되어 개발되었다. 타조는 데이터 분석을 위해 외부합병정렬 알고리즘을 사용하며, 정렬 연산에 영향을 주는 매개변수로 정렬 버퍼 사이즈와 팬-아웃을 가진다. 본 논문은 타조의 정렬 연산에 영향을 미치는 매개변수인 정렬 버퍼 사이즈와 팬-아웃 값에 따른 정렬의 성능 차이를 보인다. 또한 측정한 성능에 대하여 정렬 버퍼 사이즈가 증가함에 따른 CPU 캐시 미스의 비율 증가, 팬-아웃에 따른 합병 단계 수의 변화가 성능 차이의 원인임을 보인다.
오늘날 급증하는 빅데이터를 효율적으로 관리하기 위해 오픈소스인 하둡을 많이 사용한다. 하둡은 분산 파일 처리 시스템인 HDFS(Hadoop Distributed File System)와 분산 병렬 처리 시스템인 맵리듀스(MapReduce)로 구성되어 있다. 하둡의 맵리듀스 프레임워크에서는 빅데이터를 HDFS에서 읽어들이고 분석 처리된 결과를 다시 HDFS에 쓴다. 이러한 분산 병렬 처리 방식은 하둡 버전에 따라 다른 시스템 구조를 가진다. 따라서 본 논문에서는 하둡 버전에 따른 빅데이터 처리 시에 동작하는 하둡시스템들의 내부 성능을 비교 분석한다. 이를 위해서 하둡 시스템을 감시할 수 있는 방법을 고안하여 내부적으로 생성되는 프로세스 및 스레드들과 변수들의 발생빈도를 측정하여 분석 지표로 사용한다.
AI 기술의 성장과 함께 지식 그래프의 크기는 지속적으로 확장되고 있다. 지식 그래프는 주로 트리플이 연결된 RDF로 표현되며, 많은 RDF 저장소들이 RDF 데이터를 압축된 형태의 ID로 변환한다. 그러나 RDF 데이터의 크기가 특정 기준 이상으로 클 경우, 테이블 탐색으로 인한 높은 처리 시간과 메모리 오버헤드가 발생한다. 본 논문에서는 해시 ID 매핑 테이블 기반 RDF 변환을 분산 병렬 프레임워크인 맵리듀스에서 처리하는 방법을 제안한다. 제안한 방법은 RDF 데이터를 정수 기반 ID로 압축 변환하면서, 처리 시간을 단축하고 메모리 오버헤드를 개선한다. 본 논문의 실험 결과, 약 23GB의 LUBM 데이터에 제시한 방법을 적용했을 때, 크기는 약 3.8배 가량 줄어들었으며 약 106초의 변환 시간이 소모되었다.
현 청소년들의 학교내 생활환경에서 문제점으로 대두되는 폭력 및 자살사고 발생률 증가에 대한 예방차원의 빅 데이터 처리 분석 시스템을 목표로 연구하였고 설계의 경제성과 용이성, 적용의 신속성 등을 고려해서 많은 이용률을 가지고 있는 오픈 소스인, 하둡 시스템(Hadoop system)의 맵리듀스(MapReduce) 알고리즘과 분산 병렬 환경을 위한 HDFS(Hadoop Distibuted File System) 구성을 사용하여 실험하였다. 연구에서 사용된 분석기법은 기존의 통계적인 분석기법들이 가지는 난이도를 피하기 위해 상업적인 사회 망의 비정형 대화 자료를 이용해서 폭력성 어휘에 대한 단어 수(word count) 분석을 적용하여 폭행, 자살사고를 사전에 감지하여 예방하는 감성분석(sentiment analysis) 시스템을 텍스트 마이닝 관점에서 제안하여 실험하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.