• 제목/요약/키워드: 맥동 히트파이프

검색결과 2건 처리시간 0.02초

다양한 작동유체로 충전된 폐쇄 루프 맥동 히트파이프 내부 유동패턴 비교 (A comparative study on the flow patterns in closed loop pulsating heat pipe charged with various working fluids)

  • 강석구;김성근;히발 아흐메드;정성용
    • 한국가시화정보학회지
    • /
    • 제17권3호
    • /
    • pp.52-58
    • /
    • 2019
  • Thermal performance and flow patterns inside the closed loop pulsating heat pipe (CLPHP) were experimentally investigated. For investigating the effect of working fluids, CLPHP was filled with various working fluids including methanol, acetone and ethanol. The thermal resistance was calculated by temperatures in evaporator and condenser and flow patterns were visualized by a digital camera. The thermal resistances for all fluids were decreased as the heat increases. Flow patterns change from static slug to elongated slug flows, bulk circulation and annular flows as the heat increases. Dry-out occurs after annular flows. For reasonable comparison of thermal performances, normalized CHF, Kutateladze number (Ku), was compared. Even though ethanol has smallest CHF, Ku of ethanol is similar with that of methanol. In addition, acetone has the highest Ku that means CLPHP with acetone provides the higher thermal performance compared with CLPHP with other fluids.

상변화물질과 맥동형 히트 파이프를 이용한 배터리 열 관리 시스템에 대한 수치해석적 연구 (Numerical study on battery thermal management system using phase change material with oscillating heat pipe)

  • 박승현;추민기;손동기;고한서
    • 한국가시화정보학회지
    • /
    • 제22권2호
    • /
    • pp.104-114
    • /
    • 2024
  • To effectively control heat generation resulting from advancements in fast discharging technology for electric vehicle batteries, hybrid Battery Thermal Management Systems (BTMS) are gaining attention. In this study, a BTMS combining Phase Change Material (PCM) with Oscillating Heat Pipe (OHP) was designed. During the phase change process of the PCM, the maximum battery temperature increased slowly. Additionally, due to the excellent heat transfer capability of the OHP, the PCM/OHP BTMS delayed the time when the maximum battery temperature exceeded 50 ℃ by 810 s compared to the PCM/copper fin BTMS, resulting in the maximum battery temperature that was 41.29 ℃ lower at 3600 s. Furthermore, in the section where the latent heat of the PCM had the greatest impact, the slope of the battery temperature difference was 0.0017 lower than that of the PCM/copper fin BTMS. Therefore, the PCM/OHP BTMS demonstrates its potential as a viable hybrid BTMS.