• Title/Summary/Keyword: 맥동 입구 유동

Search Result 13, Processing Time 0.022 seconds

A Study on Flow Characteristics of Developing Laminar Pulsating Flows in a Square Duct (정4각단면덕트 입구영역에서 층류맥동유동 유동특성에 관한 연구)

  • 박길문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1683-1696
    • /
    • 1991
  • 본 연구에서는 정4각단면덕트 입구영역에서 층류맥동유동(laminar pulsating flows)의 유동특성을 이론 및 실험적으로 규명하기 위하여, 이론적 방법으로 덕트 입 구영역에서의 층류맥동유동에 대한 운동량방정식을 유도한 후 비선형인 대류항을 선형 화 시켜서 라플라스변환으로 속도분포식의 해를 구하였고, 실험적인 방법으로는 시험 덕트 크기는 횡단면의 가로*세로가 40mm*40mm이고, 길이가 4000mm인 정4각단면덕트 입구영역에서 송풍기에 의한 공기흡입유동으로 층류진동유동을 발생하며 이들 두유동 을 합성시켜 발생한 층류맥동유동에 대하여 열선유속계의 열선신호로부터 얻어진 속도 파형을 고찰하여 덕트내의 맥동유동에 대한 임계레이놀즈수를 결정하고 속도분포를 측 정하였다. 그리고 이론적으로 얻어진 속도분포식과 열선유속계로 측정한 속도분포를 비교검토하여 정확성을 검증하고, 이들 해석결과로 부터 층류맥동유동의 입구길이(en- trance lenght)식을 결정하여 제안하였다.

Effect of Inflow Fluctuation of LOX Manifold of Liquid Rocket on the Flow (산화제 매니폴드 입구유동의 맥동 현상이 산화제 분사량에 미치는 영향)

  • Lee Gunho;Byun Yung-Hwan;Na Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.68-74
    • /
    • 2004
  • Effect of fluctuation imposed on the inflow to LOX manifold of liquid rocket has been analyzed numerically. Time-varying fluctuation was idealized by the sinusoidal signal and three different representative frequencies were considered. It was found that all the frequencies tested produced the consistent flow reactions in the manifold in that the place close to the region of infection showed oscillatory flow rate through injector orifices in phase with the inflow fluctuation whereas the other side exhibits characteristics which are out of phase.

Fluid-Structure Interaction in the Axisymmetric Abdominal Aortic Aneurysm By Pulsatile Flow (맥동유동에 의한 축대칭 복부대동맥류의 유체-고체 상호작용)

  • 권치호;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.59-68
    • /
    • 2001
  • 유체-고체 상호작용을 고려하여 다양한 복부대동맥류 모델에 대해서 맥동유동 및 구조를 동시에 해석하였다. 동맥류의 확장부 크기와 혈관벽 두께에 따라서 총 여덟 개의 축대칭 동맥류 모델을 선정하였다. 유한체적법 및 압력기반의 유한차분법을 이용하여 유동을 해석하였으며, 유한요소법을 이용하여 구조해석을 수행하였다. 동맥류의 확장부위가 클수록 최대응력은 최대확장부위와 변곡점에 해당하는 동맥류의 입구 및 출구 부분에 집중되었으며, Von Mises 응력은 최대확장부위 뿐만 아니라 동맥류의 근위부와 원위부($\pm$1D)에서도 현저하게 증가하였다. 또한 더욱 확장된 모델일수록 혈관벽은 직경방향의 변위보다 축방향의 변위가 지배적이었으며, 동맥류 원위부보다 근위부에서 큰 축방향 변위를 나타냈다. 동맥류 입구부의 미약한 와류는 한 주기동안 그 크기와 강도를 더해가며 동맥류 원외부로 이동하였고, 동맥류의 내부 유동은 압력차이가 감소하는 기간동안 더 큰 영향을 받았다. 확장정도가 심할수록 동맥류 내부에 더 크고 강한 와류가 관찰되었다. 압력차이가 최소가 된 직후 동맥류의 근위부와 원위부동맥 벽 근처에서의 역방향 유동이 관찰되었다. 대체로 혈관벽 두께가 감소한 모델과 더욱 확장된 모델일수록 벽전달률은 감소하였다. 혈관벽의 탄성에 의하여 압력차이와 벽전달률 사이에 위상차가 존재함이 확인되었다. 유체-고체의 상호작용을 고려한 연구는 다른 심혈관계를 이해하는데도 매우 유익할 것으로 생각된다.

  • PDF

A study on velocity profiles and inlet length of developing transitional pulsating flows in the entrance region of a square duct (정4각 덕트 입구영역에서 천이파동유동의 속도분포와 입구길이에 관한 연구)

  • 유영태;모양유;홍성삼
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.92-104
    • /
    • 1993
  • In the present study, the velocity profiles and entrance length of developing transitional pulsating flows are investigated both analytically and experimentally in the entrance region of a square duct. The systems of conservation equations for transitional pulsating flows in a square duct are solved analytically by linearizing the non-linear convective terms. Analytical solutions are obtained in the form of infinite series for velocity pofiles. The experimental study for the air flow in a square duct(40mm*40mm*4000mm) is carried out to measure velocity profiles and other parameters by using a hot-wire anemometer with a data acquisition and processing system. The distribution of velocity profiles( $u_{ps}$ / $u_{m,ta}$) in the decelerating period is higher than in the accelerating period. The distribution of the axial component of the axial component of velocity in the transitional flow is nearly uniform in the central region of the duct, and decrease rapidly near the wall. The entrance length correlation of the transitional pulsating flows in a square duct is obtained to be $L_{e}$/ $D_{h}$=0.83 $A_{1}$R $e_{ta}$ /(.omega. sup+1)$^{2}$TEX>

  • PDF

A Study on Pressure Distribution, Wall Shear Stress and Friction Factor of Developing Turbulent Pulsating Flows in a Square Duct(Ⅰ), -Experimental Analysis- (정4각단면덕트의 입구영역에서 난류맥동유동의 압력분포, 전단응력분포와 관마찰계수에 관한 연구(Ⅰ), - 실험해석-)

  • Park, Gil-Mun;Cho, Byeong-Gi;Koh, Yeong-Ha;Bong, Tae-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.58-67
    • /
    • 1996
  • In the present study, the pressure distribution, wall shear stress distribution and friction factor of developing turbulent pulsating flows are investigated theoretically and experimentally in the entrance region of a square duct. The pressure distribution for turbulent pulsating flows are in good agreement with the theoretical values. The time-averaged pressure gradients of the turbulent pulsating flows show the same tendency as those of turbulent steady flows as the time-averged Reynolds number $(Re_{ta})$ increase. Mean shear stresses in the turbulent pulsating flow increase more in the inlet flow region than in the fully developed flow region and approach to almost constant value in the fully developed flow region. In the turbulent pulsating flow, the friction factor of the quasi-steady state flow $({\lambda}_{q, tu})$ follow friction factor's law in turbulent steady flow. The entrance length of the turbulent pulsating flow is not influenced by the time-averaged Reynolds number $(Re_{ta})$ and it is about 40 times as large as the hydraulic diameter.

  • PDF

Analysis for the Flow and Wall Shear Stress with the Diameter Ratios of an Abdominal Aortic Aneurysm in a Pulsatile Flow (맥동 유동에서 복부 대동맥류의 직경비에 따른 유동 및 벽면전단응력 해석)

  • 모정하
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.181-187
    • /
    • 2002
  • The objective of the present study was to two-dimensionally investigate the characteristics of flow and wall shear stress under pulsatile flow in the aneurysm which is a local dilatation of the blood vessel for pulsatile flow. The numerical simulation using the commercial software were carried out for the diameter ratios(ratio of maximum diameter of aneurysm to the diameter of blood vessel) ranging from 1.5 to 2.5 and Womersley number, 15.47. It was shown that a recirculating flow at the bulge was developed and disappeared for one Period and the strength of vortex increased with the diameter ratio Especially. at time of 3.19s. the very weak recirculating flow was developed at the left upper sites of the aneurysm. The maximum values of the wall shear stress increased in Proportion to the diameter ratio. However. the Position of a maximum wall shear stress was the distal end of the aneurysm(z = 35mm) regardless of the diameter ratios.

Experimental Investigation on Heat Transfer Characteristics in a Uniformly Heated Pipe with Pulsating Pressure (맥동 압력을 받는 가열관 내부에서의 열전달 특성에 관한 실험적 연구)

  • 이건태;강병하;이재헌;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1760-1769
    • /
    • 1992
  • An experimental study of thermal transport from a uniformly heated pipe to a pulsating flow has been carried out. Surface of the pipe is imposed with constant heat flux providing by electric heating band. This problem is of particular interest in the design of Stirling engine heat exchangers and in understanding the blood flow in the aorta. Temporal Variatiens of temperature and pressure inside the circular pipe are measured. The dependence of temperature distributions and heat transfer rate on the mean flow rate in the pipe and on the pulsating frequency is investigated in detail. The experimental results indicate that the measured temporal variations of temperature and pressure become nearly sinusoidal The amplitude of temperature variation near the pipe wall is much more substantial than that in core of the pipe. It is also found that the heat transfer rate is increased significantly as the frequency of the pulsating pressure is increased or the mean flow rate in a pipe is increased. The results obtained are also compared with those for non-pulsating flow circumstance.

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by Using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyeon-Cheol;Lee, Haeng-Nam;Park, Gil-Mun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1561-1568
    • /
    • 2001
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional 180$^{\circ}$curved duct were experimentally investigated. The experimental study for air flows in a curved duct are carried out to measure axial velocity profiles, wall shear stress distributions and entrance length in a square-sectional 180$^{\circ}$curved duct by using the Laser Doppler Velocimeter(LDV) system and the data acquisition. Velocity profiles are obtained using the Rotating Machinery Resolver(RMR)and PHASE software in case of turbulent pulsating flow. Finally, it was plotted by the ORIGIN software. The experiment was conducted in seven sections from the inlet (ø = 0$^{\circ}$) to the outlet (ø=l80$^{\circ}$) at 3 0$^{\circ}$intervals of the duct.

Experimental Study on the Unsteady Flow Characteristics of Propellant in the Satellite (인공위성에 사용되는 추진연료의 비정상 유동특성에 관한 실험적 연구)

  • 최진철;윤효철;강신재
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2000
  • A Thruster valve operates to supply fuel into thruster chamber. Very quick on-off operation of thruster valve results in unsteady flow of fuel in the propellant supplying system. Then fuel kinetic force, elastic material of propellant line, compressibility of fuel cause the flow field to pulsate. The pressure oscillation arising from resonance would damage the weak part of the thruster valve and other propellant supplying equipment. Pressure drop and fuel flowrate through propellant suppling system were measured, and pressure oscillation were triggered at the thruster valve inlet.

  • PDF

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyun-Chul;Lee, Haeng-Nam;Park, Gil-Moon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.397-403
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional $180^{\circ}$ curved duct were experimentally investigated. Experimental studies for air flows were conducted to measure axial velocity and wall shear stress distributions and entrance length in a square-sectional $180^{\circ}$ curved duct by using the LDV with the data acquisition and the processing system. The experiment was conducted in seven sections from the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation were summarized as follows ; (1) When the ratio of velocity amplitude ($A_1$) was less than one, there was hardly any velocity change in the section except near the wall and any change in axial velocity distributions along the phase. When the ratio of velocity amplitude ($A_1$) was 0.6, the change rate of velocity was slow. (2) Wall shear stress distributions of turbulent pulsating flow were similar to those of turbulent steady flow. The value of the wall shear stress became minimum in the inner wall aid gradually increased toward the outer wall where it became maximum. (3) The entrance length of turbulent pulsating flow reached near the region of bend angle of $90^{\circ}$, like that of turbulent steady flow. The entrance length was changed by the dimensionless angular frequency (${\omega}^+$).

  • PDF