• Title/Summary/Keyword: 맥놀이

Search Result 91, Processing Time 0.029 seconds

Analysis on the Acoustic Beat of a Slightly Asymmetric Cylindrical Shell (미소 비대칭 원통쉘의 음향 맥놀이 해석)

  • Ahn, Sung-Jong;Kang, Yeon-June;Kim, Seock-Hyun;Park, Sung-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.183-190
    • /
    • 2008
  • In this paper, radiation characteristics of the beating sound are analytically investigated on a slightly asymmetric cylindrical shell. The cylindrical shell isan efficient model to consider the beat characteristics of Korean bells. Slight asymmetry in Korean bells makes mode pair which has close frequency components and the interaction of each mode pair produces beating sound. Based on the analytical model, the radiated sound field is determined. Using the sound beat map, the beating sound vs. direction and distance is investigated. Finally, results of the theoretical method are compared with those of the boundary element method to verify the validity.

Beat tuning of Silla Great Bell (신라대종의 맥놀이 조절)

  • Kim, Seockhyun;Lee, Joong Hyeok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Silla Great Bell was made to reproduce King Seongdeok Divine Bell and it was restored to have the same structure and patterns. The most difficult problem was to reproduce the magnificent striking sound and dynamic hum tone with strong beat like in King Seongdeok Divine Bell. Especially, beating sound is attributed to the uncontrollable asymmetry occurring in the casting process, so it can not be predicted or controlled before casting. In this study, we introduce the method and process to make Silla Great Bell have a strong beat with a proper period. Position conditions of mode pairs and striking point for a strong beat were identified. Bell thickness was locally decreased to make proper period of beat. The process was performed according to the simulation result of an equivalent bell model. As a result, the original weak and long beat was made to a strong beat with a proper period.

Beat Control Method Using the Finite Element Analysis of an Equivalent Ring (등가 링의 유한요소해석을 이용한 맥놀이 조절법)

  • Kim, Seock-Hyun;Cui, Cheng-Xun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.365-371
    • /
    • 2008
  • In this study, beat control method using an equivalent ring model is proposed to control beat period of a slightly asymmetric ring. Slight asymmetry in a ring generates mode pair and the interaction of the mode pair makes beat in vibration and sound. In a ring, as a simplified bell type structure, mode data are measured and an equivalent ring is determined so that the measured mode condition is satisfied. By the finite element analysis on the equivalent ring, changes of mode pair condition are predicted when local mass is attached or the local thickness is decreased. The predicted results are compared with the experimental result and the validity of the proposed method is verified.

Beat control method of Korean bells using artificial dumshoi (인공 덤쇠를 이용한 한국종의 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Jae Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.192-200
    • /
    • 2021
  • Korean bell is a macroscopically axi-symmetrical structure, but has a slight asymmetry due to complex patterns and casting irregularity. Small asymmetry separates one vibration mode into a mode pair with slight frequency difference. The mode pair interferes and creates a beat. The vivid beat with an appropriate period makes the bell sound magnificent and lively feeling. In this study, we propose a method to make the vivid beat using artificial dumshoi. This method creates the vivid beat by designing artificial dumshoi that overwhelms the bell asymmetry. To this end, the asymmetry of Korean bell is quantified by analyzing the beat period data of a number of Korean bells cast in modern times. Based on the measured beat period data, the magnitude of asymmetry is quantified using an equivalent bell model and artificial dumshoi is applied. The movement of mode pair by dumshoi is predicted through finite element analysis. Finally, a design example of the artificial dumshoi for clear beat is introduced.

A Correlation between Emile Sound and Other Waves (에밀레의 맥놀이와 다른 파동과의 상관관계)

  • 안정근;진용옥
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • The most important characteristic of Emile Bell's sound is a beating. It is modulation phenomenon which appears as a result of interference multiplication in time domain. This modulation phenomenon can be modeled as DSB-SC which suppress carrier and signals distributed both sides. The beatiog wave is observed in Laman distribution signal for polyvinyl speech signal, water vein wave, tide wave. The beating wave is caused by asymmetry Property of the bell.

  • PDF

Beat Period Tuning Method Using an Equivalent Bell Model (등가 종 모델을 이용한 맥놀이 주기 조절법)

  • Kim, Seock-Hyun;Lee, Joong-Hyeok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.561-568
    • /
    • 2012
  • This study proposes a method of an equivalent bell model in order to tune the beat period of a Korean bell. In a Korean bell having a slight asymmetry, each circumferential mode splits into a mode pair which has a slight difference in frequency, and the interaction of the mode pair makes a beat in vibration and sound. An equivalent bell model which consists of an axi-symmetric bell and an equivalent point mass, has the same mode property as in a real bell. The equivalent bell model is constructed by the finite element analysis based upon the theory of a revolutionary shell. Using the equivalent bell model, the beat period is predicted when the bell thickness is locally decreased to improve the beat property. The predicted result is verified by experiment on a test bell. The proposed method is useful to save the time required for tuning the beat period of a large bell.

Acoustic Analysis of a Jing Based on Drive Point and Blow Strength (징의 타격 위치와 강도에 따른 음향 분석)

  • Cho, Sangjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.328-334
    • /
    • 2015
  • This paper describes an acoustic analysis of a Jing, Korean percussion instrument, according to different drive point and blow strength, and this analysis is focused on the softening and beat phenomena. Three kinds of blow strength (very strong, strong, and weak) and three locations of drive point (center, up, and right) are applied, and the spectrogram function built in Matlab is utilized to analyzing the softening and beat of target sounds. The stronger blow you drive to the center of the Jing, the more clearly softening is observed. Frequency shifting is increased proportionally to the blow strength and frequency and it is stand out on the harmonics in contrast with that of other partials. Beat of the Jing can be classified into the early beat and late beat. The beats by the outside driven Jing are distributed in wider frequency band than the beats by the center driven Jing. In addition, it is observed that the early beat is affected by few specific partials developed around harmonics for the center driven Jing.

On a Study Vibration of the Divine Bell of King $S\v{o}ngd\v{o}k$ by Doppler Effect (도플러 효과에 의한 성덕대왕 신종의 맥놀이 현상에 관한 연구)

  • Ham Myungkyu;Park Won;Jang Keumyoung;Bae Myungjin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.61-64
    • /
    • 1999
  • 에밀레종은 771년도에 성덕대왕의 공적을 기리기 위해 34년간 주조하여 만든 세계적인 문화유산이다. 외형도 미려하지만 종소리는 천, 지, 인을 뒤흔드는 신비감을 갖추고 있다. 에밀레 종조리는 끊어질 듯 이어지는 소리, 애끓는 소리, 심금을 울리는 소리 등의 특징을 갖는데 끊어질 듯 이어지는 소리는 맥놀이 현상으로 나타난다. 지금까지 맥놀이 현상의 규명에 대한 많은 연구가 있었지만, 그 원인을 실험을 통해 분명히 밝히기는 이번이 처음이다. 여기에는 우리 선조들이 750년경에 이미 진자(흔들이)의 등시성 원리를 알고 있었으며, 도플러 효과도 알고 있었기 때문에 에밀레 종소리에 응용이 가능하였다. 결론적으로 우리는 1228년전에 완성한 우리민족의 지혜와 숨결이 스며있는 에밀레 종소리의 맥놀이 현상을 규명하고 재현함으로서 문화민족의 자부심으로 새로운 세대를 개척해 나아갈 수 있는 원동력을 얻고자 한다.

  • PDF

Combustion Instability Characteristics due to the Beating Phenomenon in the Dual Swirl Gas Turbine Model Combustor (이중선회 가스터빈 모델연소기에서 맥놀이 현상으로 인한 연소불안정 특성)

  • Jang, Munseok;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.61-69
    • /
    • 2016
  • This study is the results related to the combustion instability phenomenon with respect to combustor length and thermal power as variables in dual swirling combustor configuration. Especially, the beating phenomena having the insensitive resonance frequency of relatively constant peaks are observed when the combustor lengths increase in a lower power regime. This beating phenomenon might be occurred due to the interacting behaviors of pilot and main burners with different periods. Therefore, such insensitive response seems to be a result of the beating phenomenon with interaction between the pilot and main flames even though the combustor lengths are increased.

Modeling for Thermoacoustic Instability and Beating Pressure Amplification in Hybrid Rocket Combustion (하이브리드 로켓의 열음향 불안정과 연소압력 맥놀이 발생 모델링)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.783-789
    • /
    • 2022
  • In a recent study, it was observed that the combustion gas entering the post chamber of a hybrid rocket contains vortices with very small size and high frequency characteristics. In addition, it was observed that small vortices collided with the nozzle wall to create a counter-flow, resulting in additional combustion with ignition delay. This study investigated the physical relationship between ignition delay induced by the counter-flow and the formation of beating pressure. To do this, a newly modified model was proposed by including ignition delay in the existing energy kicked oscillator model proposed by Culick. Numerical results show that the ignition delay is an important factor in determining the occurrence of the combustion pressure beats through the periodic formation of thermoacoustic coupling. In addition, when the ignition delay was reduced by increasing the post chamber length, the phase difference between the energy kick and the pressure generation was increased, the periodic pressure beats did not occur at all.