• Title/Summary/Keyword: 매연 배출물

Search Result 65, Processing Time 0.042 seconds

Effects of Fuel Injection Timing on Exhaust Emissions Characteristics of Biodiesel Blend Oil in Diesel Engine (디젤기관에서 바이오디젤 혼합유의 배기배출물 특성에 미치는 연료분사시기의 영향)

  • Lim, Jae-Keun;Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.603-608
    • /
    • 2012
  • Recently we have a growing interest in environmental pollution and alternative energy. Diesel engine is generally used to produce the power on shore and sea. However, the combustion characteristics and exhaust emissions of the engine are changed on account of the wear of fuel system and the altered ambient condition of the combustion chamber by the increment of the engine operation hour. Therefore the combustion characteristics and exhaust emissions on the fuel injection timing were experimentally investigated to find out the optimum fuel injection timing in case of the about 20 years used diesel engine using biodiesel blend oil. The original fuel injection timing of the engine is BTDC $22^{\circ}$ CA. However, it is found that the optimum fuel injection as a result of analyzing the specific oil consumption and exhaust emissions of 20 years used the engine is BTDC $26^{\circ}$ CA.

Effect of Ethanol Content on Fine Soot Particle Emission from a Diesel-Ethanol Blended Fuel Diesel Engine (디젤-에탄올 혼합연료의 에탄올 함량이 미세 그을음(Soot) 입자 배출특성에 미치는 영향)

  • Park, Su-Han;Cha, June-Pyo;Kwon, Seok-Ju;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1359-1365
    • /
    • 2011
  • The purpose of this study is to investigate the effect of ethanol content on the emission of nanosized particles from a diesel-ethanol blended fuel engine. The engine combustion and exhaust emission characteristics of a singlecylinder diesel engine were analyzed using an emission analyzer and an SMPS(scanning mobility particle sizer). The analysis revealed that soot emission increased with the ignition delay. When the ignition delay was fixed, an increase in the ethanol content caused a decrease in the soot emission. With an increase in the ethanol blending ratio, the number concentration and mass distribution of nanosized particles generally decreased. However, for 30% ethanol blending, large particles were observed because of the agglomeration of soot particles, and consequently, the particle mass increased.

Effect of Fuel Injection Timing on the Performance and Exhaust Emissions in IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 디젤기관에서 연료분사시기 변화에 따른 기관성능 및 배기배출물 특성)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2004
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. However, BDF can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the effects of injection timing on the characteristics of performance and emissions with BDF in IDI diesel engine, BDF derived from rice bran oil was considered in this study. The engine was operated at six different injection timings and six loads at a single engine speed of 2000rpm. When the injection timing was retarded, better results were obtained, which may confirm the advantage of BDF. The reduction of NOx and smoke was observed for a 2$^{\circ}$ retarded injection timing without any sacrifice of BSEC.

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

Exhaust Emissions Characteristics of a Small Diesel Engine using Rice-bran Oil (미강유 적용 소형 디젤엔진의 배기배출물 특성)

  • 나우정;유병규;정진도
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-134
    • /
    • 1998
  • It seems possible, by use of vegetable oils, to solve the pollution problem caused by the exhaust gas from diesel-engine vehicles. Recently vegetable oils has received considerable attention as an alternative and clean energy source to the foreseeable depletion of world oil supplies. The objective of this study is to experimentally investigate the characteristics of exhaust emissions of a small diesel engine using light oil, rice-bran oil, heated rice-bran oil, rice-bran oil treated with ultrasonic energy. SO$_2$ emission from the pure and the treated rice-bran oils was not detected at speeds hgher than 1,800 rpm while that from the light oil was detected at all the speeds at 4/4 load. NOx emission form these vegetable oils was generally higher compared to that from the light oil for most of the test conditions. tendency opposite to that of NOx emission. The data obtained in this experiment may be applicable for the desist of small diesel engine using the alternative fuels.

  • PDF

An Experimental Study on the Combustion Characteristics with Fuel Injection System in the Diesel Engine (디젤엔진의 연료분사계가 연소특성에 미치는 영향에 관한 실험적 연구)

  • 윤천한;김경훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1244-1249
    • /
    • 2001
  • The characteristics of engine performance with fuel injection system in D.I. diesel engine were studied in this paper A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozz1e hole, diameters of an injection pipe and injection timing in the fuel injection system. The authors have obtained the results that optimizing the factors of fuel injection system is siginificant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

  • PDF

A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine (층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구)

  • 강병무;안현찬;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

An Experimental Study on the Simultaneous Reduction of Smoke and NOx by Oxygenated Fuel Additives in DI Diesel Engine (직접분사식 디젤기관에서 함산소연료 첨가에 의한 매연과 NOx 동시 저감에 관한 실험적 연구)

  • ;近久 武美
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.106-114
    • /
    • 1996
  • Extensive experiments were conducted to investigate the emission of DI diesel engine by using DMC(dimethyl carbonate) as an oxygenated fuel additives. The results indicate that smoke reduces almost linearly with fuel oxygen contents. Reductions of HC and CO were attained noticeably, while a small increase in NOx was encountered concurrently. The effective reduction in smoke with DMC was maintained with the presence of CO2, which suggested a low NOx and smoke operation could be obtained in combination of using oxygenated fuel and EGR. Further experiment was conducted a thermal cracking set-up for mechanism studies.

  • PDF

Characteristics of Exhaust Emission by Impinging Spray of Diesel Engine (충돌분무에 의한 디젤기관의 배기 배출물 특성)

  • Jin, Y.S.;Kim, J.D.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.26-31
    • /
    • 2007
  • Recently, study on the improvement of combustion performance for the diesel engine by using the impinging spray in the combustion chamber has been actively studied. The purpose of this study is to examine the variation of exhaust emission between the trial engine with impinging plate and the prototype engine in accordance with change of fuel injection timing and fuel injection pressure. The concentration of nitrogen oxide of trial engine decreased more than 50% compared to prototype engine. However, smoke of trial engine indicated very high concentration compared to prototype engine. The effect of fuel injection timing on the nitrogen oxide and smoke indicated different results, that is, the concentration of nitrogen oxide decreased as the degree of fuel injection start become slower, whereas the concentration of smoke decreased as the degree of fuel injection start become faster.

  • PDF

A Study on the Exhaust Emission Characteristics with EGR Application in a DI Diesel Engine (직접분사식 디젤기관에서 EGR 적용시의 배기배출특성에 관한 연구)

  • Choi, S.H.;Oh, Y.T.;Kwon, K.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.10-14
    • /
    • 2005
  • The Effects of cooled and hot EGR(exhaust gas recirculation) on the characteristics of smoke and NOx emission have been investigated using a single cylinder, water-cooled, four cycle, DI diesel engine at several loads and speeds. In this study, a manually controlled EGR system was installed on a agricultural diesel engine which was operated at various operating system. And, the effects of hot EGR and cooled EGR on smoke and NOx emission were compared. The results showed that cooled EGR method was more effective than hot EGR method on smoke and NOx emission.

  • PDF