• Title/Summary/Keyword: 매설조건

Search Result 143, Processing Time 0.025 seconds

Analysis of Geothermal Melting System Conductivity for Improving Road Safety (도로주행 안정성 향상을 위한 지열 융설시스템 열전도 분석)

  • Lee, Seok-Jin;Kim, Bong-Chan;Lee, Seung-Ha;Seo, Un-Jong;Kim, Jin-Han;Lee, Joo-Ho
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Sliding accidents on the road have a high percentage by road freezing, especially, they often have appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out; pavement materials of concrete and asphalt where the system is buried. The heat transfer simulation is essential when the geothermal snow melting system is applied according to heating exchanger pipe placed in the lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. Many variables are discovered from numerical analyses under the same conditions with model test.

  • PDF

Dynamic Response Characteristics of Embankment Model for Various Slope Angles (다양한 경사를 가지는 제방모형의 지반 증폭 특성)

  • Kim, Hoyeon;Jin, Yong;Lee, Yonghee;Kim, Hak-sung;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • In this study, the dynamic response characteristics of the embankment model were analyzed using shaking table experiments. Laminar shear box was used to minimize the boundary effect of the model. The ratio of the vertical length to horizontal length of the slopes were 1:1, 1:1.5, and 1:2. The sensor array which is consist of 12 accelerometers was used to measure acceleration time-histories at each location of the slope model. The dynamic response characteristics of the models were analyzed for sine wave, sinesweep wave, and artificial earthquake wave in this study. The experimental results show that the dynamic response of the embankment model is increased with the slope angle. Furthermore, the experimental setup used in this study was verified with the comparative analysis between experimental results and 1-D analytical simulation on the flat ground model.

Reproduction of Piping Failure Due to the Permeable Layer Using Centrifuge Test (원심모형실험을 통한 전석층이 존재하는 제방에서의 파이핑 현상 모사)

  • Jin, Seok-Woo;Kim, Nam-Ryong;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.1-10
    • /
    • 2011
  • This paper simulates the piping effect, found levees with large difference in coefficient of permeability within the foundation such as the Gim-po Levee, via centrifuge model test which is a model test. We have also conducted a numerical analysis under the same conditions as the centrifuge model test to compare its results. First, we decided to use the centrifuge model based on the Gim-po Levee, and the tests were executed on a model levee with pore water pressure transducers. We have found that most of the water flows through the permeable layer and causes the piping effect. Via video camera footage, we have found that the piping effect occurred at the toe of the model levee. The characteristic of pressure head distribution, obtained from the pore water pressure transducers, also proves the occurrence of the piping effect. The numerical analysis results also showed the same results as the centrifuge model test. We have simulated the piping effect via centrifuge model test and believe that the centrifuge model test is viable for various tests, predictions and evaluation of the levee problems.

Evaluation of Operating Conditions for the Natural Gas Transmission Pipeline in the Arctic Environment (극한지 장거리 천연가스 배관의 운전조건 평가)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2017
  • The operating temperature range of the natural gas pipeline in Arctic environment would be controlled primarily to optimize gas throughput and to minimize the environmental impact resulting from operation of such pipelines. The temperature of the gas as it flows through the pipeline is a function of both the Joule-Thomson effect and the pipe to soil heat transfer. Therefore, the heat transfer and Joule-Thomson effect of the buried natural gas pipeline in this study were carefully considered. Soil temperatures and overall heat transfer coefficients were assumed to be $0{\sim}-20^{\circ}C$ and $0{\sim}5.5W/m^2K$, respectively. The gas temperature and pressure calculations along a pipeline were performed simultaneously at different soil temperatures and overall heat transfer coefficients. Also, this study predicted the phase change and hydrate formation for different soil temperatures and overall heat transfer coefficients using HYSYS simulation package.

Failure Probability Assessment of Natural Gas Pipeline under Combined Stresses (복합하중에 의한 천연가스 배관의 파손확률 평가)

  • Baek, Jong-Hyun;Chang, Yun-Chan;Kim, Ik-Jung;Kim, Cheol-Man;Kim, Young-Pyo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • The structural reliability assessment can be used to improve the reliability in the asset integrity management of the pipeline by using a geometric variation, mechanical characteristics, load change and operating condition as evaluation factors. When evaluating structural reliability, the failure probability of the natural gas pipe is evaluated by the relationship of the resistance of the pipe material to external loads. The failure probability of the natural gas pipe due to the combined stresses such as the internal pressure, thermal stress and bending stress was evaluated by using COMREL program. When evaluating the failure probability of the natural gas pipe, a buried depth of 1.5 to 30 m, a wheel load of 2.5 to 20 ton, a temperature difference of 45℃, an operating pressure of 6.86MPa, and a soil density of 1.8 kN/㎥ were used. The failure probabilities of the natural gas pipe were evaluated by the Von-Mises stress criterion as the maximum allowable stress criterion under the combined stresses.

A Sudy on the Underground Condition of Road Using 3D-GPR Exploration (3D-GPR탐사를 이용한 도로하부 지반상태에 대한 연구)

  • Lee, Sung-Ho;Jang, Il-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • A study on the analysis of underground ground condition using 3D-GPR exploration was carried out in this paper. The test bed was constructed similar to the field, and the detection analysis was carried out for each depth of cavity and underground burial. Through this, we were able to know the permittivity of the ground by inversion, and we could confirm the depth of detection for the joint by accurate calculation. We confirmed the signal waveforms in the cavity under the road through 3D-GPR exploration, analyzed more quantitatively in subjective and empirical analysis. The subsidence and depth of the subsurface settlement can be observed through 3D-GPR survey, and ground condition change after the ground reinforcement can be confirmed through the exploration section.

An Evaluation of the Influence of a Mixed Gas Explosion on the Stability of an Underground Excavation (혼합 가스폭발이 지하구조물 안정성에 미치는 영향 평가)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.1-15
    • /
    • 2020
  • With the increase of the utilization of underground space in Korea, explosion accidents at the underground facilities such as gas pipes have occurred frequently. In urban area with high population density, individual explosion accidents are likely to spread into large complex accidents. It is necessary to investigate the effect of explosion on the stability of underground structures in urban area. In this study, a sensitivity analysis was carried out to investigate the possible influence of nearby explosion on the stability of underground structure with 8 parameters including explosion conditions and rock properties. From the sensitivity analysis using AUTODYN, the main and interaction effects of each parameters could be determined. From the analysis, it was found that the distance between explosion point and tunnel, charge weight, and Young's modulus are the most important parameters on the stress components around a tunnel.

A Study on the Construction of a TestBed for Performance Inspection of Underground Surveying Equipment (지하공간탐사기기 성능검사 테스트베드 구축 연구)

  • Bae, Kyoung Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.525-531
    • /
    • 2021
  • The importance and utilization of underground spatial is increasing due to urban concentration. And so underground spatial information is being built. Because underground spatial information is an important NSDI (National Spatial Data Infrastructure), the accuracy and performance of underground spatial exploration devices used for construction are managed separately. In accordance with the laws and regulations related to spatial information, the government is conducting performance tests for underground facilities surveying equipment. The current performance test site mainly targets metal pipelines, and there is no absolute position surveying inspection system. In this study, test bed model for performance inspection of underground space exploration equipment was presented. The test bed presented in this study can be used as a test site to supplement the limitations of the existing domestic test bed and to verify the performance of the latest equipment.

Variations of Runoff Quantity and Quality to Landuse Changes in the Hakuicheon Watershed (학의천 유역의 토지이용변화에 대한 유출량 및 수질의 변화)

  • Lee Kil Seong;Chung Eun-Sung;Park Sun-Bae;Jin Lak-Sun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.664-668
    • /
    • 2005
  • 근래 지속적으로 진행된 도시화 및 산업화로 인하여 이전보다 불투수 지역이 많이 증가하였고 도심지역에는 대부분 하수관거가 매설되어 있는 등 물순환이 과거에 비해 현저하게 왜곡되어 있다. 이를 올바르게 바로잡기 위해서는 과거와 현재의 수문학적 상태에 대한 정확한 이해가 우선적으로 요구된다. 본 연구에서는 안양천 유역의 지류인 학의천을 대상유역으로 선정하고 유출 수량 및 오염물질 발생량을 PCSWMM(Storm Water Management Model)과 PLOAD(Pollutant Loading)를 이용하여 모의하였다. PCSWMM은 하수관거를 포함하여 연속유출모의를 수행할 수 있으며 PLOAD는 GIS를 기반으로 하는 Screening 모형으로 토지이용별 원단위를 이용하여 소유역에서 발생하는 오염량을 추정할 수 있다. 기준년도 2002년에 대해 모든 조건은 동일한 상태에서 토지이용만 1975년, 2000년, 2016년으로 변화시켜 모의를 수행하였다. 1975년, 2000년, 2016년의 불투수 면적비는 각각 $2.6\%,\;22.8\%,\;24.1\%$이며 침투량은 1975년의 $23\%$에서 2000년과 2016년에 각각 $17.9\%와\;17.6\%$로 감소하였고, 이로 인해 지표유출량은 1975년의 $48.1\%$보다 2000년과 2016년에 각각 $55.0\%,\;55.4\%$로 증가하였다. 또한 오염물질이 유역에서 발생하여 하천으로 전달되는 유달량은 유역전체로 보면 1975년 보다 2000년에 BOD는 4.0배, COD는 3.3배, SS는 2.7배, TN은 1.3배, TP는 1.6배 증가하였다. 이러한 모의 결과는 학의천 유역에 대해 소유역별로 발생하는 연도별 유출량 및 오염물질 유달량을 정량적으로 제시하므로 유역관리방안을 도출하는데 효과적으로 활용될 수 있다.최대화하기 위한 환경관리 방안 제시에 중점을 두어 수행하였다.ncy), 환경성(environmental feasibility) 등을 정성적으로(qualitatively) 파악하여 실현가능한 대안을 선정하였다. 이렇게 선정된 대안들은 중유역별로 검토하여 효과가 있을 것으로 판단되는 대안들을 제시하는 예비타당성(Prefeasibility) 계획을 수립하였다. 이렇게 제시된 계획은 향후 과학적인 분석(세부평가방법)을 통해 대안을 평가하고 구체적인 타당성(feasibility) 계획을 수립하는데 토대가 될 것이다.{0.11R(mm)}(r^2=0.69)$로 나타났다. 이는 토양의 투수특성에 따라 강우량 증가에 비례하여 점증하는 침투수와 구분되는 현상이었다. 경사와 토양이 같은 조건에서 나지의 경우 역시 $Ro_{B10}(mm)=20.3e^{0.08R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$로 나타났다.천성 승모판 폐쇄 부전등을 초래하는 심각한 선천성 심질환이다. 그러나 진단 즉시 직접 좌관상동맥-대동맥 이식술로 수술적 교정을 해줌으로써 좋은 성적을 기대할 수 있음을 보여주었다.특히 교사들이 중요하게 인식하는 해방적 행동에 대한 목표를 강조하여 적용할 필요가 있음을 시사하고 있다.교하여 유의한 차이가 관찰되지 않았다. 또한 HSP 환자군에서도 $IL1RN^{*}2$ a

  • PDF

An Experimental Study on Behavior Characteristics of the Pretension Soil Nailing Systems (프리텐션 쏘일네일링 시스템의 거동특성에 관한 실험적 고찰)

  • Choi, Young-Geun;Shin, Bang-Woong;Park, Si-Sam;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • Application of the soil nailing method is continuously extending in maintaining stable excavations and slopes. However, ground anchor support system occasionally may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve local stability. In this study, a newly modified soil nailing technology named as the PSN (Pretension Soil Nailing) is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, laboratory model tests are carried out to investigate the failure mechanism and behavior characteristics of the PSN system. Various results of model tests are also analyzed to provide a fundamental basis for the efficient design.