• Title/Summary/Keyword: 매립폐기물

Search Result 588, Processing Time 0.025 seconds

Physical Properties of Planting Concrete Using Recycled Aggregates (재생골재를 이용한 식재용 콘크리트의 물리적 특성)

  • 한천구;오선교;이상태;김정진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.16-23
    • /
    • 2002
  • In construction field, million tons of demolished concrete are produced in korea. It is urgently needed that they are used as recycled materials in order to prevent environment pollution and gain economic profits. However, existing recycling methods of demolished concrete have their limits for wide application. They have been only focused on the burying and banking. Therefore, in this paper, physical and mechanical properties of planting concrete using construction wastes for aggregates are described in order to investigate the validities of demolished concrete as recycled aggregates. The Properties of strength and durability are tested. According to the experimental results, compressive strength and freeze-thaw resistance of planting concrete using recycled aggregates shows worse performance than those using crushed stone concrete. But, it shows positive performance on the absorption ratio and thermal conductivity. Especially, considering the side of recycling of concrete wastes, it is recommended that recycled aggregates made with construction wastes is applied to planting concrete.

A Study on the Recycling of Detoxified Waste Asbestos (무해화 처리 폐석면의 재활용에 관한 기초연구)

  • Kim, Tae-Hyoung;Song, Tae-Hyeb;Shin, Hyen-Gyoo;Jang, Kyung-Pil
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.161-166
    • /
    • 2020
  • In accordance with the amendment of the Industrial Safety and Health Act of 2007, Korea completely prohibited the import, distribution and manufacture of asbestos like Europe and Japan. Accordingly, the current problem of asbestos is the safe maintenance and disposal of asbestos construction material, the disposal of asbestos, and the final disposal of asbestos building materials. If the asbestos building material is made harmless, it may be classified as general waste or as recyclable waste. Therefore, this study evaluated the physical and chemical characterization of detoxified asbestos powder and the applicability of secondary products. In this study, it was found that applying the appropriate temperature and pressure for catalysis during asbestos desalination through low temperature chemical treatment was the most important factor.

Plans for Resource Circulatory Culture Program in Sejong (세종시 자원순환사회 조성 추진 방안)

  • Kim, KyeongRae;Shin, Dong Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.150-152
    • /
    • 2021
  • For the development of a resource recycling society, it is important to control the generation of waste in all processes such as production, distribution, consumption and disposal, and to recycle the recyclable resources of waste instead of simply landfilling and incineration. However, in order to develop a resource-recycling society, not only emitters, businesses, and the central government, but also local governments need to work together to find a solution. Therefore, in this study, we present a promotion strategy for the development of Sejong City's resource-recycling society, taking into consideration the current situation of Sejong City as well as changes in the government's institution system. We suggest that regionally preparing recycling priority management plan, maximizing waste resource utilization, establishing recycling industry activation plan, and building a systematic and efficient recycling platform, etc.

  • PDF

Recycling technology of animal fats and protein from solid wastes of leather processing (피혁 가공 폐기물로부터 동물성 유지와 단백질의 회수 및 재자원화 기술 연구)

  • Yun, Jong-Kook;Paik, In-Kyu;Cho, Do-Kwang;Park, Jae-Hyung;Choi, Ju-Hyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.3
    • /
    • pp.98-109
    • /
    • 2002
  • Each kinds of the leather process wastes which is occurred in the leather making process is almost more than 50% on the basis of the raw hide. The emitted process wastes are important oil and fats and protein resources because they are composed of animal oil and fats and fibrous protein. But most of them are incinerate or filled up simply as the industrial wastes without applying to recycling into the other use. Thus the problems of environmental pollution are becoming more critical and the processing cost of the leather process wastes (40,000~60,000 won) is a heavy burden on the production cost. Because the organic wastes such as fleshing scrap, pelt scrap are high fetid, its unlawful abandonment without being processed properly causes the occurrence of secondary pollution by an offensive odor and leakage of waste water. Thus we made the re-resource experiments in order to resolve this problems. The principal contents of this study are to process the collected leather waste scrape through separate the oil and fat ingredients with various propert by processing various chemicals and enzymes on the next effector. The re-resource application of separated oil and fat ingredients produced chemical for leather applicable to manufacturing process of leather through chemical transformation process(sulphation reaction, sulphitation reaction etc.) of oil and fats.

  • PDF

Study on the Detoxification of Asbestos-Containing Wastes (ACW) Using SiC Plate (SiC 플레이트를 이용한 석면 함유 폐기물의 무해화 연구)

  • Hong, Myung Hwan;Choi, Hyeok Mok;Joo, So Young;Lee, Chan Gi;Yoon, Jin-Ho
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Even asbestos-containing waste (ACW) are highly harmful to humans, it continues being produced due to the massive disposal of asbestos-containing products. A development of asbestos detoxification and recycling technologies is required. Heat treatment using microwave is the most efficient method for ACW detoxification. However, microwave heat treatment method has the limitation that asbestos does not absorb microwave at room temperature. That is why, in this study, ACW was detoxified by microwave heat treatment adding the ACW between SiC plates, which are inorganic heating elements that absorb microwaves at room temperature. In order to improove the heat transfer, ACW was crushed and pulverized and then heated using microwave. Microwave heat treatment temperature and time variables were adjusted to investigate the detoxification properties according to heat treatment conditions. After heat treatment, treated ACW was analyzed for detoxification properties through crystal structure and microstructure analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microwave heat treatment method using SiC plate can be heated up to the target temperature within a short time. Finally, complete asbestos detoxification was confirmed from the crystal structure and the microstructure when the microwave heat treatment was performed at 1,200℃ for at over 60 minutes and at 1,300℃ for at over 10 minutes.

Properties of Chemically Activated MSWI(Municipal Solid Waste Incinerator) Mortar (도시 폐기물 소각재를 이용한 화학적 활성화 모르타르의 특성)

  • Jo, Byung-Wan;Kim, Kwang-Il;Park, Jong-Chil;Park, Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.589-594
    • /
    • 2006
  • The recycling of industrial wastes in the concrete manufacturing is of increasing interest worldwide, due to the high environmental impact of the cement and concrete industries and to the rising demand of infrastructures, both in industrialized and developing countries. The production of municipal wastes in the South Korea is estimated at about 49,902 ton per day and only 14.5% of these are incinerated and principally disposed of in landfill. These quantities will increase considerably with the growth of municipal waste production, the progressive closing of landfill, so the disposal of municipal solid waste incinerator(MSWI) ashes has become a continuous and significant issue facing society, both environmentally and economically. MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1,000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development composition variation of such alkali-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H). The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a alkali-activator. Compressive strengths with values in the 40.5 MPa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

A Study on the Optimal Management Option of the Disposal of Resources Found in Standard Plastic Garbage Bags (종량제봉투 내 폐자원에 대한 최적 처리방안 연구)

  • Park, Sang Jun;Kim, Eui Yong
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.44-54
    • /
    • 2014
  • A standard plastic garbage bag which was discarded from Incheon Metropolitan City was composed of 4.5% recyclable resources (aluminum cans 0.2%, steel cans 2.5%, glass 1.8%), 92.5% resources with recoverable energy (papers 23.0%, plastics 15.5%, combustible etc. 54.0%) and 3.0% non-combustible etc. Recycling is more effective than landfilling for aluminum cans, steel cans, and glass. The energy recovery process using solid refuse fuel (SRF) is more effective than incineration for papers and plastics. Incineration is more effective than recycling for combustible etc. 2,068,948 Million Btu of total energy savings and 21,008 $MTCO_2E$ of total GHG reductions were obtained by the application of the proposed scheme. The total energy savings were equivalent to an economic benefit of 422 billion won per year. The total GHG reductions were equivalent to a GHG benefit of 4,119 passenger cars not running per year. The lower calorific value of the combustible materials was obtained to be 1,936 kcal/kg of papers, 5,079 kcal/kg of plastics and 2,462 kcal/kg of combustible other resources, respectively. If papers and plastics are properly mixed, the mixture can be used as SRF. The lower calorific value of combustible other resources does not meet the quality criteria for refuse derived fuel, therefore its components are inappropriate to used as solid refuse fuel.

Removal of Heavy Metals from Wastewater Using Steelmaking Slag and Sludge (제강 슬래그 및 분진에 의한 폐수 중 중금속 제거)

  • Hyun, Jae-Hyuk;Kim, Min-Gil;Nam, In-Young;Baek, Jung-Sun
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 1999
  • This study was carried out to investigate the efficiency of stcclmaldng slag and sludge in removing metals existing in wastewater or leachate. Laboratory experiments were performed as a function of initial concentration of metals. pH a and temperature of the background solution and the presence of che1ating agent, EDTA. The test conditions were temperatures r ranging from $25^{\circ}C$ to $50^{\circ}C$; initial concentrations varying from 5mg/L to 50 mg/L; pH between 3 and 11; and Cu. Cd‘ and Pb a as adsorbates. The results of tests showed that overall rates of metals removal were 20~30% at pH 3 and greater than 90% at p pH 7 and 11. Metals were removed from the solution predominantly via adsorption in acidic conditions, and the combined e effects of adsorption and precipitation in neutral and alkaline conditions. In view of the test results and other engineering c characteristics of steelmaking slag and sludg$\xi$, these industrial by-products from steel industry have a high potential to be used l in wastewater treatment and are particularly beneficial when used as landfill liner additives due to thelJ ability to remove heavy m metals from leachate.

  • PDF

The Recycling of Waste Asphalt Concrete Mixfure Using a Movable Asphalt Recycling Machine (이동형 아스팔트 재생기를 이용한 페아스팔트 콘크리트 혼합물의 재활용)

  • 박승범;조청휘;김정환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.75-83
    • /
    • 2000
  • Recently, the quantities of waste asphalt concrete at construction sites have much increased greatly. but maintaining a filling-up and final disposal place is a difficult problem. Therefore, we are faced with a worsening environmental problem brought about present illegal measures. So, safety treatment and recycling of construction waste is a very important question in the Preservation of environmental and natural resources In this study we performed fundamental investigation to manufacture the base recycling asphalt mixture by movable asphalt recycling machine. It contained waste asphalt concrete and recycling agent and its quality was equal to virgin asphalt concrete.

  • PDF

A Case Study on Simplified Assessment Method for Site Selection of the Waste Treatment Facilities in Korea (폐기물 처리시설 입지선정의 효율화 방안에 관한 연구 - 여주군 폐기물 매립지 입지선정 사례를 중심으로 -)

  • Lee, Mu Choon;Koo, Ja Kon;Kim, Ki Cheol;Kwon, Yeon Jeong
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • The comparative evaluation is the most effective method for site selection because the selection of waste treatment facility is to determine the optimum site out of limited candidate sites. This study adopted the ordinal scale evaluation, one of methods of comparative evaluation. The ordinal scale evaluation aims to determine the investigating items referring to the character of sites, to determine the importance factors for investigating items, and to determine the optimum site according to the quantitative evaluation. As a result of this study, the defects of the former reports on the environmental characteristics, such as obscurity of meaning and subjective statement, were reduced by the ordinal scale evaluation which is one of the quantitative evaluation methods. This ordinal scale evaluation method has some valuable advantages, such as, to be able to consider the cost-effect efficiency, to consider the objectiveness and the clearness of the reports on the environmental characteristics. Therefore the reducement of social complications about site selection of the indisposed facilities could be expected by this study.

  • PDF