• Title/Summary/Keyword: 매립폐기물

Search Result 587, Processing Time 0.024 seconds

Characterization of Unburned Carbon Particles from Fly Ash Using SEM (비산회로부터 회수한 미연탄소분의 전자현미경을 이용한 특성분석)

  • Ahn, Yang-Kyu;Kil, Dae-Sup
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.567-573
    • /
    • 2002
  • The most important and largest commercial outlet of fly ash in Korea is a replacement material of Portland cement in concrete industry. The high level of unburned carbon in ash brings about some malfunctions in concrete. Therefore, fly ash is refined to improve the quality as a concrete additive. In this process, a lot of the residual carbon is produced, and discarded now. In the present study, to find out a valuable outlet of the enriched carbon samples, the basic morphology of residual carbon in fly ash from Boryung power plant was investigated. The unburned carbon characterization included shape, size measurement, and chemical analysis was examined using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX).

Determination of Weighted Value to Estimate Each Emission Factor of Landfill (폐기물 매립부문 배출계수 평가항목의 가중치 결정)

  • Lee, Seung Hoon;Kim, Jae Young;Yi, Seung Muk;Choi, Eun Hwa;Kim, Young Soo
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.199-208
    • /
    • 2014
  • According to "IPCC guide line for national greenhouse gas inventories" each country should develop the 'Country-specific emission factor' and apply it to estimate greenhouse gases emissions from landfill. It could reflect properties of country and make estimation more accurate. For that accuracy, developed country-specific emission factor should be assessed and be verified consistently. Developed emission factors should be assessed in terms of Representative, Emission Property, Accuracy and Uncertainty, but there is no study about weighted assessment factors under each emission variable. This study do survey targeting public officials, professors and other experts for Analytical Hierarchy Process(AHP), mostly use to make decisions, to weight assessment factors. We investigated the weighted values per Emission factor for Representative, Emission property, Accuracy and Uncertainty on AHP survey, and Representative factor was the highest, and then in the order of Emission property (0.26), Accuracy(0.22), Uncertainty (0.15).

Potential Element Retention by Weathered Pulverised Fuel Ash : II. Column Leaching Experiments (풍화 석탄연소 고형폐기물(Pulverised Fuel Ash)의 중금속 제거가능성 : II. 주상용출실험)

  • Lee, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.259-269
    • /
    • 1995
  • Column leaching tests were conducted using fresh and weathered pulverised fuel ash of some 17 and 40 years old from two major British power plants, with deionised water and simulated synthetic industrial leachate. The former was to see the leaching behaviour of weathered ash and the latter was to see if the formation of secondary products from water and PFA interaction and ameliorating effect in removing metals from industrial leachates. Fresh PFA liberates elevated concentrations of surface-enriched inorganics, including Ca, Na, K, B, $Cr_{total}$, Li Mo, Se and $SO^{2-}_4$. This might indicate their association with the surface of PFA particles. In the column leaching tests using weathered ash and deionised water, elements are not readily leached but are released more slowly, showing relatively constant concentrations. For the case of weathered ash, some readily soluble surface-enriched elements appears to have been liberated in their early stage of leaching and the liberation of glass associated elements are thought to be more important function in controlling the element concentration. The result from column leaching tests exceed for a number of elements when compared with various Water Standards and suggests the leachate from PFA disposal mound needs dilution to achieve target concentrations. PF A shows element retention effect for many elements, including B, Fe, Zn, Hg, Ni, Li and Mo, in the order of fresh Drax ash > weathered Drax ash > Weathered Meaford ash in retaining capacity. Geochemical modelling using a computer program WATEQ4F reveals some solubility controlling secondary solid products. These include $CaSO_4{\cdot}2H_2O$ for Ca, $Al(OH)_3$ for Al and $Fe(OH)_3$ for Fe.

  • PDF

Study on Development of Embedded Source Depth Assessment Method Using Gamma Spectrum Ratio (감마선 스펙트럼 비율을 이용한 매립 선원의 깊이 평가 방법론 개발 연구)

  • Kim, Jun-Ha;Cheong, Jea-Hak;Hong, Sang-Bum;Seo, Bum-Kyung;Lee, Byung Chae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.51-62
    • /
    • 2020
  • This study was conducted to develop a method for depth assessment of embedded sources using gamma-spectrum ratio and for the evaluation of field applicability. To this end, Peak to Compton and Peak to valley ratio changes were evaluated according to 137Cs, 60Co, 152Eu point source depth using HPGe detector and MCNP simulation. The effects of measurement distance of PTV and PTC methods were evaluated. Using the results, the source depth assessment equation using the PTC and PTV methods was derived based on the detection distance of 50 cm. In addition, the sensitivity of detection distance changes was assessed when using PTV and PTC methods, and error increased by 3 to 4 cm when detection distance decreased by 20 cm based on 50 cm. However, it was confirmed that if the detection distance was increased to 100 cm, the effects of detection distance were small. And PTV and PTC methods were compared with the two distance measurement method which evaluates the depth of source by the change of net peak counting rate according to the detection distance. As a result of source depth assessment, the PTV and PTC showed a maximum error of 1.87 cm and the two distance measurement method showed maximum error of 2.69 cm. The results of the experiment confirmed that the accuracy of the PTV and PTC methods was higher than two distance measurement. In addition, Sensitivity evaluation by horizontal position error of source has maximum error of less than 25.59 cm for the two distance measurement method. On the other hand, PTV and PTC method showed high accuracy with maximum error of less than 8.04 cm. In addition, the PTC method has lowest standard deviation for the same time measurement, which is expected to enable rapid measurement.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.

Material Performance Evaluation of Ceramic Fiber Reinforced Concrete using Energetically Modified Industrial By-products (산업부산물의 활성분체 및 세라믹섬유 혼입 콘크리트의 재료성능 평가)

  • Choi, Seung Jai;Yang, Dal Hun;Lee, Tae Hee;Kim, Jang Ho Jay
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.118-124
    • /
    • 2018
  • Social infrastructures and industrial complexes have been actively constructed in South Korea since the 1960 s as part of the economic development plan, resulting in rapid industrialization. However, side-effects due to the industrialization have occurred. An increase in industrial by-products or wastes is a typical problem. Although some industrial by-products are recycled in Korea as well as worldwide, some wastes are landfilled or dumped in the sea. Although many researchers have executed various technologies for the disposal of industrial wastes, economic and environmental technologies have not been developed. Thus, this study aims to activate paper and fly ashes during the crush process to overcome the drawback of simple concrete mixed with paper and fly ashes, which cause a reduction in workability and strength, derive an optimal content and replacement ratio of concretes mixed with Energetically Modified Material (EMM), and evaluate the material performance. In addition, the basalt fiber is mixed simultaneously to achieve the reduction of cracks and improve the tensile strength.

Hydrogeochemistry and Statistical Analysis for Low and Intermediate Level Radioactive Waste Disposal Site in Gyeongju (경주 중·저준위 방폐장의 수리지화학 및 통계 분석)

  • Soon-Il Ok;Sieun Kim;Seongyeon Jung;Chung-Mo Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.629-642
    • /
    • 2023
  • Currently, low and intermediate level radioactive waste is being disposed of at the Gyeongju disposal site for permanent isolation. Since 2006, the Korea Radioactive Waste Agency has been conducting site characteristics surveys continuously verifying changes in the site based on the site monitoring and investigation plan. The hydrogeochemical environment of the disposal site is considered for the evaluation of natural barriers. However, the seawater must be considered because of the regional characteristics of Gyeongju, which is near the East Sea. Therefore, this study, collected 30 samples for deriving the groundwater quality data from seven wells and compared with two seawater samples collected from October 2017 to June 2022. Additionally, the study explores the groundwater monitoring method using statistical tools such as clustering and background concentration analysis. The groundwater samples in the study area were classified into two to four clusters depending on their chemical constituents-especially, EC, HCO3, Na, and Cl-using statistical analysis, molar ratio, and K-means clustering.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash (매립석탄회를 혼합한 유동성 충진재의 동적거동특성)

  • Chae, Deokho;Kim, Kyoungo;Shin, Hyunyoung;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2014
  • Recently, there have been various lifeline installations constructed in the underground space of urban area due to the effective use of land. For newly installed lifelines or the management of the installed lifelines, many construction activities of excavation and backfilling are observed. Around these area, there are possibilities of collapse or excessive settlement due to the leaking of the pipe or unsatisfactory compaction of backfill material. Besides, construction costs can be saved since the on-site soils are used. The application of this liquidity filling material is not only to the lifeline installation but also to underpin the foundation under the vibrating machinery. On the evaluation of the applicability of this method to this circumstance, the strength should be investigated against the static load from the machine load as well as the vibration load from the activation of the machine. In this study, the applicability of the liquidity fill material on the foundation under the vibrating machinery is assessed via uniaxial compression and resonant column tests. The liquidity filling material consisting of the on-site soils with loess and kaolinite are tested to investigate the static and dynamic characteristics. Furthermore, the applicability of the reclaimed ash categorized as an industrial waste is evaluated for the recycle of the waste to the construction materials. The experimental results show that the shear modulus and 7 day uniaxial strength of the liquidity filling material mixed with reclaimed ash show higher than those with the on-site soils. However, the damping ratio does not show any tendency on the mixed materials.

Physical Properties of Shale Aggregate and Characteristics of Concrete in Replacement Ratio in Daegu-Kyeongbuk Region (대경권 셰일 골재의 물성 평가 및 치환율 변화에 따른 콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh;Bae, Su-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5551-5557
    • /
    • 2012
  • Sedimentary rocks dug up in construction fields are mostly stockpiled for landfill disposal, leading to an increase in construction costs and construction inefficiency. After screening, some of the sandstone can be used as aggregate; however, most of the shale ends up as industrial waste in practice. In this study, to stabilize the demand and develop resources for alternative aggregates of concrete, the potential use of shale, which is widely distributed in the Daegu-Kyeongbuk region, as a concrete aggregate was evaluated. Red and black shale exported from a Daegu excavation site was selected for use in the experiments and evaluated by comparing with hornfels, which is widely used as a coarse aggregate and is a type of andesite and metamorphosed sedimentary rock. The physical properties of the aggregate were evaluated in accordance with the test methods of KS F 2527 "crushed concrete aggregate," and the compressive strength against the shale aggregate replacement ratio was measured. The compressive strength of the concrete after 28 days was 30.8 MPa when the black shale replaced 100% of the aggregate in the concrete and 31.1 MPa when the red shale replaced 100% of the aggregate in the concrete. Compared with the compressive strength of 37.5 MPa for concrete prepared by using plain aggregate, using shale as a substitute for the aggregate produced an average compressive strength that was 82% of normal concrete.