• Title/Summary/Keyword: 매립재

Search Result 413, Processing Time 0.018 seconds

Growth and morphological characteristics of Polygonatum species indigenous to Korea (한국산 둥굴레속(Polygonatum) 수집종의 생육 및 형태적 특성)

  • Yun, Jong-Sun;Son, Suk-Yeong;Hong, Eui-Yon;Kim, Ik-Hwan;Yun, Tae;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.15 no.2
    • /
    • pp.164-171
    • /
    • 2002
  • Morphological characteristics and growth pattern of 10 Polygonatum collections indigenous to Korea were examined to select the promising medicinal, edible resources and horticultural crops. Plant heights of I0 collections ranged from 15 to 102cm. Stem type was ascending or erect, and node numbers per a stem was 6.2 to 23.2. Phyllotaxis type was alternate or verticillate, and leaf shape was elliptical or linear. Leave numbers per a stem was 5.2 to 63.4, and bract types were classified into bracteate and nonbracteate. Flowers bloomed from May 7 to May 30, and flowering period was 5 to 13 days. Inflorescence types were classified into racemose, corymbose, and umbellate. Flower numbers per a stem was 1.5 to 125.2, and flower length was 13.1 to 30.2㎜. Perianth shapes were classified into tubular, constrict and urceolate. Surface colors of rhizome were pale yellow, pale brown, brown, and dark brown. As a result of this experiment, P. sibiricum, P. odoratum var. pluriflorum and P. odoratum var. thunbergii were thought to be useful as the medicinal and edible resources plants. On the other hand, P. odoratum var. pluriflorum 'Variegata', and P. odoratum var. maximowiczii, P. lasianthum. P. involucratum, P. desoulavyi, P. humile, and P. inflatum were thought to be useful as horticultural plants.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

The change of designation and release of Hapcheon (Gyeongsangnam-do) Swan Sanctuary as Natural Monument (천연기념물 합천 백조도래지의 지정과 해제과정)

  • SIM Keunjeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.162-178
    • /
    • 2024
  • Swans are representative migratory birds that spend winter in East Asia, and have long been considered rare birds. In particular, they were regarded as king of Japan. The process of designating a natural monument in Hapcheon Swan Sanctuary is an interesting story. In this study, the designation and release process of Hapcheon Swan Sancturay ((Bakgok-ji, Yongju-myeon 龍州面 朴谷池), (Jeongyang-ji, Daeyang-myeon 大陽面 正陽池), Gaho, Cheongdeok-myeon 淸德面 嘉湖)) Natural Monument, was examined. These places were designated as a natural monument on August 27, 1934, during the Japanese colonial period, and was lifted on August 14, 1973, after the Cultural Protection Act was enacted after liberation. From the beginning of the new year in 1929, the Japanese Government-General of Korea (朝鮮總督府) decided to capture swans alive to give to the king of Japan. An official of the Japanese Government-General of Korea (統監) decided to offer swans to the king during his New Year's greeting visit. The department in charge of capturing swans was the Gyeongsangnam-do Provincial Police Department, and the execution was the police station of each county (郡). The reason is believed to be that it is easy to forcibly mobilize, control, or urge people, and the capture activity had to be completed as soon as possible. A total of three swans were captured in Hapcheon-gun from January 12 to 14, 1929. At that time, various newspapers published related information. Based on these facts and experiences, it is estimated that the Hapcheon area was selected when designating a natural monument in 1934. Hapcheon Swan Sancturay, Natural Monument lost its function due to excessive human interference of various developments, illegal capture, and use of poison to catch swans. Their number has also significantly decreased. It was thus removed from the natural monument in 1973. One of the three swan sanctuaries (Gaho 嘉湖) has been completely reclaimed, one (Bakgok-ji 朴谷池) has almost no migratory birds due to the conversion of wetlands, and one (Jeongyang-ji 正陽池) has swans flying back. In the case of Jeongyangji (正陽池), It is an encouraging sign that many swans fly as the surrounding environment and growing conditions change. This phenomenon is interpreted to mean that nature and climate are recovering and healing.