Proceedings of the Korea Society for Simulation Conference
/
2005.11a
/
pp.130-137
/
2005
본 논문은 심장이 수축$\cdot$이완함에 따라 그 형태와 위치가 변하는 관상동맥의 구조와 그 움직임을 사실적으로 표현하기 위한 매개변수적 모델링 기법을 제안한다. 완성된 모델은 관상동맥의 움직임을 관찰함으로써 심장질환 판단에 도움을 주고, 심장시술 시뮬레이션 및 시술계획수립에 사용될 수 있다. 매개변수적 기법으로 생성된 모델은 메쉬 정점의 인덱스만으로 모델간 매칭을 위한 대응점을 찾을 수 있으므로, 시간대별로 달라지는 정점의 위치를 쉽게 추적함으로써 모델의 움직임을 표현할 수 있다. 그러나 이러한 기법으로 생성된 모델은 분리, 접합 등의 변형조작이 어렵고, 트리형태 객체에 적용하기 힘든 단점이 있다. 본 논문에서는 이를 극복하기 위해 분할된 혈관영역의 골격데이타에서 찾아낸 분기점을 중심으로 Generalized Cylinder를 이용하여 실린더 형태의 각 혈관세그먼트를 모델링 한 후, 분기영역을 3개의 하프파이프(half pipe)와 2개의 삼각형 패치로 연결하여 모델링하였다. 완성된 모델은 다시점 관상동맥데이터에 적용하였고, 각 시점에서 구해진 정점의 위치를 선형보간함으로써 부드러운 혈관의 움직임을 나타내었다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.292-292
/
2021
최근 데이터 과학의 획기적인 발전으로 딥러닝(Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 기반으로 정확한 댐유입량 예측을 수행하는 SWLSTM 모델을 제안하였다. SWLSM은 모델의 정확도를 개선하기 위해 세 가지 주요 아이디어를 채택하였다. (1) 통계적 속성 (PACF) 및 교차 상관 함수(CCF)를 사용하여 적절한 입력 변수와 시퀀스 길이를 결정하였다. (2) 선택된 입력 예측 변수 시계열을 웨이블릿 변환(WT)을 사용하여 하위 시계열로 분해한다. (3) k-folds cross validation 및 random search 기법을 사용하여 LSTM의 하이퍼 매개변수들을 효율적으로 최적화하고 검증한다. 제안된 SWLSTM의 효과는 한강 유역 5개 댐의 시단위/일단위/월단위 유입량을 예측하고 과거 자료와 비교함으로써 검증하였다. 모델의 정확도는 다양한 평가 메트릭(R2, NSE, MAE, PE)이 사용하였으며, SWLSTM은 모든 경우에서 LSTM 모델을 능가하였다. (평가 지표는 약 30 ~ 80 % 더 나은 성능을 보여줌). 본 연구의 결과로부터, 올바른 입력 변수와 시퀀스 길이의 선택이 모델 학습의 효율성을 높이고 노이즈를 줄이는 데 효과적임을 확인하였다. WT는 홍수 첨두와 같은 극단적인 값을 예측하는 데 도움이 된다. k-folds cross validation 및 random search 기법을 사용하면 모델의 하이퍼 매개변수를 효율적으로 설정할 수 있다. 본 연구로부터 댐 유입량을 정확하게 예측한다면 정책 입안자와 운영자가 저수지 운영, 계획 및 관리에 도움이 될 것이다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.1C
/
pp.11-17
/
2011
This study was performed a series of the isotropic compression-expansion tests and the drained triaxial tests with various the relative densities 25%, 50%, 80% and 100% for Baekma river sand. Using the tests results the characteristic of the parameters of Lade's single hardening constitutive model were investigated. The soil parameters Kur and n representing elastic behavior are not much affected by the change of the relative density. The other parameters such as failure criterion (m, ${\eta}_1$), hardening function (C, p) and plastic potential (${\Psi}_2$, ${\mu}$) are in a positive linear relationship with the relative density. Since the soil parameters h and $\alpha$ representing yield function do not change much to the change of relative density and also closely related to failure criterion, they can be replaced by failure criterion ${\eta}_1$. We also observed that predicted values from the Lade's single hardening constitutive model were well consistent with the observed data.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.217-217
/
2021
우리나라 동해 연안에 영향을 미쳤던 역사지진들과 일본에서 진행된 동해에서의 대규모지진에 관한 조사검토회에서 2014년에 보고된 동해 동연부와 남해 남연부 측에 있는 60개의 지진공백역들에 대한 단층매개변수들이 공개되어있어 수치실험을 통해 지진해일의 재해도를 분석하고 있다. 하지만 이러한 단층매개변수 값들에 대한 불확실성이 존재하기에 이를 대비한 지진해일 대책을 세울 필요가 있다. 단층매개변수의 불확실성을 고려하는 방법 중 한 가지는 해당 변수들을 조정하여 Case 모델들을 다양화하는 것이다. 이 때 매개변수의 변동에 대한 기준이 필요하기에 단층매개변수에 대한 민감도 분석이 진행되어야 한다. 본 연구의 최종목표는 지진해일에 대한 위험성에 대비하기 위해 선정된 연구지역에 대하여 단층매개변수들을 조정한 경우별 모델들을 사용한 수치모형 실험을 실행한 후 도출된 지진해일 처오름높이 및 처내림높이 결과를 분석하여 각 단층매개 변수의 지진해일에 대한 민감도를 결정하는 것이며, 최종적으로 확률론적 지진해일 재해도분석(Probabilistic Tsunami Hazard Analysys : PTHA)을 실시할 때 기준이 되는 로직트리를 작성할 때 명확한 근거를 제시한다. 단층매개변수의 민감도 분석은 일본(Goda et al., 2014), 미국(Sepúlveda and Liu, 2016), 뉴질랜드(D. Burbridge et al., 2015) 등에서 연구가 활발하게 이루어졌으며 현재도 활발한 연구가 진행되고 있다. 민감도 분석 과정은 먼저 역사 지진해일과 우리나라 근해에 영향을 미칠 수 있는 지진해일의 단층매개변수 조사한 후 파향선추적모형(wave ray-tracing)의 결과를 정리하여 대상 지역에 영향을 미치는 단층을 선정하고, 선정한 단층들의 단층매개변수 값을 일정한 기준을 두고 조정하여 실시한 지진해일 수치모형 실험에서 계산한 결과값을 분석하여 민감도를 결정한다.
본 논문은 정확하면서도 효율적인 한국어 문장 분류 기법에 대해서 논의한다. 최근 자연어처리 분야에서 사전 학습된 언어 모델(Pre-trained Language Models, PLM)은 미세조정(fine-tuning)을 통해 문장 분류 하위 작업(downstream task)에서 성공적인 결과를 보여주고 있다. 하지만, 이러한 미세조정은 하위 작업이 바뀔 때마다 사전 학습된 언어 모델의 전체 매개변수(model parameters)를 학습해야 한다는 단점을 갖고 있다. 본 논문에서는 이러한 문제를 해결할 수 있도록 도메인 적응기(domain adapter)를 활용한 한국어 문장 분류 프레임워크인 DAKS(Domain Adaptation-based Korean Sentence classification framework)를 제안한다. 해당 프레임워크는 학습되는 매개변수의 규모를 크게 줄임으로써 효율적인 성능을 보였다. 또한 문장 분류를 위한 특징(feature)으로써 한국어 사전학습 모델(KLUE-RoBERTa)의 다양한 은닉 계층 별 은닉 상태(hidden states)를 활용하였을 때 결과를 비교 분석하고 가장 적합한 은닉 계층을 제시한다.
Park, Jun-young;Kim, Dong-in;Roh, Kwang-rae;Kwon, Hyeong-wook;Kang, Woo-chul
Annual Conference of KIPS
/
2018.10a
/
pp.680-682
/
2018
기후변화에 따라 매개 질병의 발병 빈도가 증가하고 있으며 모기와 같은 매개체에 의해 전염되는 매개 질병은 인구집단에 대한 중요한 위협 요인이다. 이러한 질병 관리를 위해 지역별 모기 서식 현황을 모니터링 하는 시스템의 필요성이 강조되고 있다. 하지만 현재의 모기 모니터링은 개체 파악을 위한 분류와 동정을 사람이 직접 수행하기에 오랜 시간이 소요된다. 이 연구는 그러한 문제점을 해결하고 미래 매개곤충 서식 현황 파악 시스템의 기반을 마련하기 위해 심층 신경망(Deep Neural Networks)을 활용하여 한국 주요 매개모기 종 분류를 수행하고 결과를 분석하였다. 종 분류를 위한 모델은 잘 알려진 신경망 모델인 DenseNet(Densely Connected Networks)을 사용하였고 이를 직접 촬영한 모기 데이터와 약간의 변형을 가한 모기 데이터를 사용하여 학습시켰다. 학습 데이터를 각각 5배, 20배, 100배로 증강하여 실제 데이터의 부족을 보완하였으며, 이를 통해 최대 99.48%의 정확도를 달성하였다.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2002.05a
/
pp.660-665
/
2002
일반적으로 유한요소 모델로부터 구한 해석결과는 대상 구조물의 모드 실험결과와 오차를 보인다. 이러한 오차로 인해서 유한요소 모델의 효용성에 한계가 발생하게 되면, 모델의 신뢰성을 높일 수 있도록 모델을 보정하는 절차가 필요하다. 유한요소 모델 개선은 이러한 오차를 줄이기 위해서 유한요소 모델을 변경하는 체계적인 접근법이다. 유한요소 모델에서 변경할 수 있는 매개변수의 개수는 실험결과의 개수보다 훨씬 많으므로 실험결과와 일치되는 개선된 모델의 수는 무한하다고 할 수 있다. 그러나, 개선된 유한요소 모델이 물리적 타당성을 갖도록 매개변수의 선택과 변경에 제한을 주면 초기 유한요소 모델에 비해서 실험결과와의 오차가 개선된 근사해만 존재하게 된다. 따라서, 모델 개선 과정을 통해서 구한 개선된 모델은 오차의 평가기준 또는 목적함수에 따라서 정해진 다양한 근사해 중 하나이다. 기존의 모델 개선 방법에서는 실험결과와의 오차를 나타내는 단 하나의 평가기준 또는 목적함수를 사용하고 이를 최소화하는 모델을 구한다. 최적화 결과를 얻기 전에는 사용된 평가기준이 타당한지 검토할 수 없으므로 대부분의 경우, 시행착오 방법으로 목적함수를 설정하게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해서 다목적 최적화 개념을 이용한 평가기준을 소개하고 특히, 대화식 다목적 최적화 기법을 이용하여 유한요소 모델을 개선한다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.13
no.2
/
pp.117-124
/
1995
The main purpose of the present study was to investigate coordinate transformation based on two different systems: one was the World Geodetic System 1984(WGS84) adopted as a reference system for GPS satellite surveying;and another was the current Korean geodetic system based on Bessel ellipsoid. For this purpose, three methods were used to determine 7 parameters as follows: Bursa-Wolf model, Molodensky-Badekas model, and Veis model. The coordinate transformation was carried out using simillity transformation applied the obtained 7 parameters and the precision of transformed coordinate was evaluated. From this results, we found that Bursa-wolf model is more suitable than others for the determination of transformation parameters in Korea.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.254-254
/
2021
기후변화로 인한 자연재해는 해마다 크게 증가하고있으며, 홍수 및 가뭄의 강도와 빈도 증가, 지구온난화로 인한 하천 건천화 등 많은 문제들이 대두되고 있다. 특히, 물 순환과정의 핵심요소로 설명되는 유출량의 변동은 용수 공급과 홍수 대응 및 관리, 하천생태계 유지를 위한 환경에 영향을 미치고 있다. 따라서, 갈수량, 풍수량 등을 산정하여 하천별 유황특성을 결정하는 방법을 사용하고 있으나, 이와같은 지표는 계측자료가 과소한 경우 하천의 유황특성을 세부적으로 이해하고 정량적으로 제시하는데에 한계가있다. 따라서, 미계측 유역에서 Soil and Water Assessment Tool (SWAT)과 같은 수리해석모델이 광범위하게 이용되고있으며, SWAT 모델은 유역의 수치표고모형, 토양 특성, 토지이용 현황, 기상 현황, 유역의 매개변수 등을 반영하여 모델이 구동되고 있다. 하지만, 광범위하게 이용되고 적용성이 입증된 모델임에도 불구하고 입력자료의 불확실성 및 조사되지 않은 영농활동 등으로 인해 결과에 불확실성이 내포되어있으며, 불확실성을 줄이기 위해 실측된 하천의 유량 자료를 이용하여 검정 및 보정작업을 거치고 있다. 모델의 보정 방법으로는 SWAT-CUP과 같은 프로그램 이용되고 있지만, 모델에서 이용되는 매개변수로는 보정할수 있는 범위가 한정적이기 때문에 모델의 정확성을 높이는데에 한계가 있다. 따라서, 본 연구에서는 선암천 유역을 대상으로 모델의 매개변수를 보정하지 않고도 머신러닝 기법을 이용하여 모델의 결과를 향상시켰다. 보정 결과, 유량의 경우 R2가 0.42에서 0.91으로 향상되었으며, 특히 고유량 구간에서의 정확성이 매우 향상되었다. 본 연구에서 평가된 SWAT+머신러닝 결합 모형은 향후 모델 구동에 필요한 입력자료가 부족한 경우와 빠른 검정 및 보정 작업이 필요할 경우 활용될수 있을것으로 판단된다.
The purpose of this study is to investigate the effect of technology acceptance model (TAM) on behavioral intention in order to grasp the degree of technology acceptance on autonomous driving among the various factors that consumers perceive as unmanned vehicle system becomes commercialized. In addition to the mediating effect of perceived usefulness proposed by the existing TAM, this study proposed the perceived trust (PT) and hypothesized its mediating effect on behavioral intention to use the self-driving. Path anlaysis is adopted to investigate our hypothesis using the structural equation model. The sample used for the analysis was 149 valid data among 160 responses. The effects of total effect, direct effect, and indirect effect were confirmed by hypothesis test on mediating effect. Non-parametric bootstrapping analysis was also performed to confirm the robustness. All the hypotheses were significant and we found a partial indirect effect, which implies that mediation effect of PT on behavioral intention.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.