• Title/Summary/Keyword: 망간단괴

Search Result 88, Processing Time 0.031 seconds

Origin of Manganese Nodules and Their Distribution in the KODOS-89 Area, Northeastern Equatorial Pacific. (KODOS-89 지역 망간단괴의 성인과 분포)

  • 정회수;정갑식
    • 한국해양학회지
    • /
    • v.25 no.4
    • /
    • pp.189-204
    • /
    • 1990
  • In the KODOS (Korea Deep Ocean Study)-89 area, western part of clarion-Clipperton fracture zones in the northeastern equatorial Pacific, magnate nodules and sediments were sampled during the 'Farnella' cruise in Oct., 1989. Bulk chemical and mineralogical analyses have been made on a suit of ferromanganese nodules and sediments to study the origin and distribution pattern of the nodules. The nodules are classified into three groups based on their origin: diagenetic nodules with high Mn/Fe ratio, Cu, Ni, Zn, Mg, todorokite contents and rough surface texture; hydrogenetic nodules with high Fe, Co, vernadite contents and smooth surface texture; and transitional nodules with intermediate characters between diagenetic and hydrogenetic nodules. Study area is divided into four zones according to the origin and abundance of nodules: far north area where nodules are hydrogenetic and intermediate in abundance; north area where nodules are diagenetic and low in abundance; south area where nodules are diagenetic and intermediate in abundance; seamount area where nodules are hydrogenetic and high in abundance. distribution pattern of manganese nodules in the KODOS-89 area seems to be controlled by latitudinal variation of productivity in water column and sea bottom morphology.

  • PDF

Regional Variability of Manganese Nodule Facies in the KR1 Area in KODOS Area, Northeastern Equatorial Pacific (북동태평양 한국 KODOS 연구지역 중 KR1 지역 망간단괴의 지역적인 특성 변화)

  • Lee, Hyun-Bok;Kim, Wonnyon;Ko, Young-Tak;Kim, Jonguk;Chi, Sang-Bum;Park, Cheong-Kee
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.477-486
    • /
    • 2012
  • High-resolution bathymetry and physico-chemical properties of manganese nodules were explored to identify the relationship between morphological features and nodule occurrences in the KR1, one of the Korean contract nodule fields located in the NE Pacific. The high-resolution seabed mapping showed that the southwestern sector of the KR1 (KR1-1) was relatively deeper than the northeastern sector (KR1-2) which is occupied by small-scale seamounts. In terms of nodule occurrence, manganese nodules in the KR1-1 were comparatively larger (2-4 cm) with rough surface (t-type) and discoidal shapes (D-type), while those in the KR1-2 were generally small (<2 cm) with smooth surface (s-type) and irregular shapes (I-type). In addition, the nodules in the KR1-1 had higher contents of Cu, Mn and Ni. Such connections of water depths to nodule appearances and metal contents are commonly observed in the Pacific nodule fields. On the other hand, the nodules in the KR1-2 tend to be controled by morphological features. The seamounts in the KR1-2 might continuously provide rock fragments as new nuclei of manganese nodules. As a result, the nodules could not grow over than 2 cm and showed the shapes of a newbie (i.e., smooth surface and irregular shapes). As a result, our observations indicate that occurrence features of manganese nodules could be subjected to water depths and seabed morphology simultaneously.

Characteristics of Manganese Nodule Distribution Pattern using Sub-bottom Profile and Deep Tow Imaging System Data (천부지층자료와 심해영상자료를 활용한 망간단괴 분포 특성 연구)

  • Ko, Young-Tak;Park, Cheong-Kee;Kim, Jong-Guk;Lee, Tae-Gook
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.427-441
    • /
    • 2006
  • Sub-bottom profiler and deep tow imaging system were performed in the KODOS (Korea Deep Ocean Study) area in order to find out controlling factor in nodule formation from the relationship between distribution of Mn nodules and micro-scale topographic change. Although abundance of r- and t- types nodules increase on the seafloor of thin upper transparent layer, no significant correlation was found between the thickness of upper transparent layer and total nodule abundance in the study area. Our results show that distribution pattern of nodule, including abundance, continuity, and facies, can vary with small scale in similar abyssal plain.

  • PDF

Shattering Ratio of Manganese Nodule and Physical Properties of Powdered Manganese Nodule and Sea eottom Sediment (망간단괴의 분화율과 망간단괴 분말 및 해저퇴적물의 물리적 특성)

  • Choi, Hun-Soo;Kang, Jung-Seock;Chang, Se-Won;Koh, Sang-Mo;Um, In-Kwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.277-287
    • /
    • 2007
  • To understand the effects of the powdered manganese nodule and sea bottom sediment pumped up with nodules on the mining process, the shattering ratio of manganese nodule and their physical properties are analyzed. The self shattering ratio and crushing shattering ratio are about 27% and about 3%, respectively. Then total shattering ratio is about 30%. The initial turbidity of the powdered manganese nodule and the bottom sediment show high, i.e., about 3,100 and 1,850 respectively. But their turbidities decrease rapidly with time. After 1 hour, turbidity of the powdered manganese nodule drops to about 1,570 and that of the bottom sediment to 1,310. The turbidity of Na-bentonite changes from 820 to 730 after 1 h and to 700 after 2 h. The viscosity of powdered manganese nodule is $1.4{\sim}1.5cP$, and the viscosity of bottom sediment is less than 1 cP. The viscosity fo Na-bentonite is initially 37.2 and increase with time to 86.4 cP after 30 min. The high initial turbidity of powdered manganese nodule is due to dark color of the powder. The high specific gravity makes rapid precipitation and then decreases the turbidity rapidly. The bottom sediment shows high initial turbidity because of easy suspension with very fine particle size. But it cannot be hydrated and formed gel in suspension, then it is easily precipitated. However Na-bentonite is hydrated to the expended state and makes gel state, then it shows high turbidity and high viscosity. These physical properties of the powdered manganese nodule suggest that the powder of manganese nodule should not make scaling inside of lifting pipe or pump. And the bottom sediment lifted up with manganese nodule should not play the role of drilling mud shch as Na-bentonite.

Mineralogy, Geochemistry, and Formation of Ferromanganese Nodules from the KONOD-1 Site, Northeastern Equatorial Pacific (북동(北東) 적도(赤道) 태평양(太平洋)(KONOD-1) 망간 단괴(団塊)의 은물조성(銀物組成), 화학분석(化學成分)과 성인(成因))

  • Kang, Jung-Keuk;Han, Sang-Joon
    • 한국해양학회지
    • /
    • v.23 no.3
    • /
    • pp.110-122
    • /
    • 1988
  • Between the Clarion and Clipperton fracture zones of the Northeastern Pacific, nodules and crusts were collected from abyssal plain and hills by the Korea Ocean Research and Development Institute in December, 1983 aboard the R/V KANA KEOKI of the Hawaii Institute of Geophysics. Mineralogical and geochemical data of bulk nodules are obtained and compared with analyses of other studies. Mechanisms of nodule formation are discussed based on these data. Generally, the nodules of the KONOD-1 site are composed of todorokite and ${\delta}-MnO_2$. The contents of Mn, Fe, Ni, and Cu of the bulk nodules are variable and the average contents of metals are slightly lower (Mn, 21.40%; Ni, 0.9%; Cu, 0.8%) than those of nodules from other abyssal plains between the Clarion and Clipperton fracture zones. High Mn/Fe (average 3.9; maximum 5.9) and Cu/Ni (average 0.8; maximum 1.0) ratios are similar to the nodules that were formed diagenetically in the northeast Pacific. The chemical characteristics of the KONOD-1 nodules reflect their sedimentary environments; nodules with higher diagenetic signatures occur in areas of thin Quaternary siliceous ooze, and nodules of lower diagenetic influence occur in topographically irregular abyssal hill areas.

  • PDF

Characteristics of Manganese Nodule from the East Siberian Sea (동시베리아해 망간단괴의 특성)

  • Koo, Hyo Jin;Cho, Hyen Goo;Yoo, Chan Min;Jin, Young Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.219-227
    • /
    • 2017
  • Manganese (Mn) nodules in the Arctic Sea have been founded in the Kara Sea and Barents Sea, but mineral and chemical compositions have been rarely investigated. In this study, mineralogical and geochemical characteristics of Mn nodules obtained during the Arctic Expedition ARA07C in northern East Siberian Sea were identified, and then genesis of Mn nodules were estimated by using these characteristics. Main manganese oxide minerals constituting the manganese nodule were buserite, birnessite, and vernadite. The Mn nodules generally represent radiated and massive texture, and the layered texture was developed restrictively. The radiated texture, main feature of the manganese nodule in the East Siberian Sea, is mainly composed of cuspate-globular microstructure. Compared with the Mn nodules in Pacific and Indian Oceans, Mn nodules of the East Siberian Sea are abundant in Mn, but Fe is too scarce. There was no difference in the chemical composition and microstructures between outer and inner part of nodule. Therefore, nodules are most likely to have only one genesis during their growth, and all of nodules indicate the diagenetic in $Mn-Fe-(Cu+Ni+Co){\times}10$ ternary diagram. It is considered that the manganese nodules in the East Siberian Sea are characterized by high Mn contents because manganese contents in the Arctic Ocean were mainly resulted from river or coastal erosion and most of them are trapped in the Arctic Ocean.

Processing Underwater Images for Information Extraction of Deep Seabed Manganese Nodules as New Energy Resource (미래 에너지 자원탐사를 위한 수중카메라 영상처리에 의한 심해저 망간단괴 정보추출)

  • Lee, Dong-Cheon;Yun, Seong-Goo;Lee, Young-Wook;Ko, Young-Tak;Park, Cheong-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.679-688
    • /
    • 2009
  • Worldwide exploring and research for manganese nodules, as new energy resource, distributed on the deep seabed have progressed recently. Korea Ocean Research & Development Institute(KORDI) is a central organization to exploit the manganese nodules in the Pacific Ocean with 5,000m depth. Precise exploration is required for estimating amount of recoverable deposit, and this task could be accomplished by processing digital image processing techniques to the images taken by underwater camera system. Image processing and analysis provide information about characteristics of distribution of the manganese nodules. This study proposed effective methods to remove vignetting effect to improve image quality and to extract information. The results show more reliable information could be obtained by removing the vignetting and feasibility of utilizing image processing techniques for exploring the manganese nodules.

Investigations on the Adsorption Characteristics of $SO_2$ Gas on Fixed Bed Manganese Nodule Column (고정(固定) 흡착층(吸着層)에서 망간단괴(團塊)의 $SO_2$ 가스 흡착(吸着) 특성(特性)에 관한 연구(硏究))

  • Baek, Mi-Hwa;Kim, Dong-Su;Jung, Sun-Hee;Park, Kyoung-Ho
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.3-12
    • /
    • 2006
  • The feasibility for the employment of manganese nodule as an adsorbent for $SO_{2}$ gas has been investigated. The specific surface area of manganese nodule particle, which used in the experiments, was ca. $221.5m^{2}/g$ and the content of sulfur in manganese nodule was observed to significantly increase after $SO_{2}$ was adsorbed on it. The EPMA for the distilled water-washed and methanol-washed manganese nodule particle after $SO_{2}$ adsorption showed that its sulfur content was slightly decreased to 14.7% and 13.1% respectively, from 15.4% before washing. The XRD analysis of manganese nodule showed that todorokite and birnessite, which are manganese oxides, and quartz and anorthite were the major mineralogical components and weak $MnSO_{4}$ peaks were detected after $SO_{2}$ was adsorbed on manganese nodule. For an comparative investigation, limestone was also tested as an adsorbent for $SO_{2}$, however, no peaks for $CaSO_{4}$ were found by XRD analysis after the adsorption of $SO_{2}$. As the size of adsorbent increased, time for breakthrough was decreased and the adsorbed amount of $SO_{2}$ was also diminished. The $SO_{2}$ adsorption was hindered when its flow rate became high and the adsorption capacity of manganese nodule was observed to be superior to that of limestone. In addition, the mixture of manganese nodule and limestone did not show an increase in the adsorption of $SO_{2}$. Finally, as the temperature was raised, the adsorbed amount of adsorbate on manganese nodule was found to be decreased.

Examination of Correction Factor for Manganese Nodule Abundance Using the Free Fall Grab and Box Corer (자유낙하식 시료채취기(Free Fall Grab)와 상자형 퇴적물시료 채취기(Box Corer)를 이용한 망간단괴 부존밀도 보정상수에 관한 고찰)

  • Lee, Gun-Chang;Kim, Jong-Uk;Chi, Sang-Bum;Ko, Young-Tak;Ham, Dong-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.280-285
    • /
    • 2008
  • Manganese nodule abundance estimated based on operation of a Free Fall Grab(FFG) needs to be corrected to make up for its incomplete recovery of nodule, because FFGs can not recover all the nodules distributed on seabed. The correction factor for nodule abundance was proposed as 1.29 and 1.13 in 1994 and 2002, respectively, mainly based on the analyses of seabed images. In this study we collected manganese nodules using both FFG and Box Corer(BC) at same stations to examine the accuracy of the previous correction factors. It was found that the nodule recovery of the BC was 1.4 times greater than that of the FFG at the same sampling station, suggesting the necessity of re-evaluation of the previously proposed correction factor for FFG. More extensive sampling and improvement of image analysis method are required to improve the precision of nodule abundance correction factor for FFG.

Application of Adsorption Isotherms for Manganese Nodule-Cadmium Interaction (망간단괴-Cd 상호작용에 대한 등온흡착식 적용)

  • 전영신;김진화;김동수
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.37-43
    • /
    • 1999
  • Studies have been conducted for the purpose of using manganese nodule and residue remained after extracting valuable metals [mm it as the adsorbent of cadmium wastewater. The study observed the adsorption percentage according to initial cadmium concentration and interpreted each adsorption systems by applying the Freundlich, Langmuir, and Temkin isotherms. The adsorption amounts increased as the initial concentration at cadmium ion increased, whereas the adsorption percentage decreased. Linearity was shown when applied to the Freundlich and Langmuir isotherms. The k value which evaluates the adsorption capacity of adsorbent in Freundlich isotherm, turned out to be 11.72, the highest in case of manganese nodule. The Xm value, the maximum adsorption amount of the adsorbate that adsorbs as a monolayer in Langmuir isotherm of manganese nodule, was estimated as 0.16, representing higher value compared with those of leached residue, leached residue-raw manganese nodule mixture, and activated carbon.

  • PDF