• Title/Summary/Keyword: 말처리

Search Result 1,591, Processing Time 0.028 seconds

Pilot study for the development of Korean and English speech processing task system (한국어-영어 말처리 평가시스템 개발을 위한 기초 연구)

  • Ji-Yeong Kim;Ji-Wan Ha
    • Phonetics and Speech Sciences
    • /
    • v.16 no.2
    • /
    • pp.29-36
    • /
    • 2024
  • A speech processing model based on a psycholinguistic approach can identify the specific speech processing deficits of children with speech sound disorders (SSDs) through various pathways. In most cases, the cause of the speech problem with SSD children is unknown, so it is important to identify the underlying strengths and weaknesses for individualized intervention. In addition, because the native language deficits can also affect foreign language production, it is necessary to examine speech processing abilities between the two languages. This study is a preliminary study to develop a Korean-English speech processing task system. Speech production task and speech processing task (DT, PRT, NRT) were conducted both in Korean and English on 10 children with SSD and 20 normal children (NSA). As a result, the SSD group showed significantly lower production ability than the NSA group in both languages. As a result of the speech processing task, there was no significant difference in the discrimination task (DT), while there was a significant difference between language types in the phonological representation task (PRT) and between language types and groups in the nonword repetition task (NRT). The results of this study confirmed that children's native language and foreign language processing skills may be different, and that the sub-tasks of speech processing system should be further subdivided.

A Study on Implementation of treatment of Korean in multi-Language Corpus Analyzer (다국어 말뭉치 분석기의 한국어 처리 구현에 관한 연구)

  • Huh, Hyun-Gue;Chung, Hye-Myoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.118-121
    • /
    • 2009
  • 말뭉치 분석기는 언어 연구에 필요한 도구로써 망뭉치 분석을 통한 언어 정보의 추출, 적용 및 확인용으로 사용할 수 있다. 본 논문에서는 언어 기술을 국부 문법에 의한 그래픽적인 기술방법으로 처리하는 말뭉치 분석기를 이용하여 한국어 텍스트를 연구하기 위하여 기존의 굴절어 중심으로 구현되어진 다국어 말뭉치 분석기에 한국어와 같은 교착어들의 텍스트 처리를 위한 기능을 구현한다.

Horse Entity Identification Framework using Deep Learning (딥러닝을 활용한 말 개체 식별 프레임워크)

  • Seo-Yun Kim;Bosan Seo;SeungJin Jung;Ki-Young Jang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.910-912
    • /
    • 2023
  • 본 논문은 말의 개체 식별 과정에 딥러닝을 활용하여 객관적으로 식별 가능한 개체의 특징을 획득할 수 있는 영상처리 기반의 말 개체 식별 자동화 프레임워크를 제안한다. 제안하는 프레임워크는 말의 개체 식별을 위한 이미지 촬영 방법, 딥러닝을 활용한 말의 특징 추출 방법, 말 객체에 대한 식별 가능 정보의 변환 방법으로 구성되어 있으며, 본 논문에서 제시하는 방법론을 바탕으로 말 개체 식별 과정을 자동화하여 말의 특징을 객관적이고 효율적으로 추출하여 말 개체 관리를 하고자 한다.

Unicode and Code Conversion for Sejong 21 Raw Corpus (21세기 세종계획 원시 말뭉치의 유니코드와 코드 변환)

  • Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.262-265
    • /
    • 2009
  • 21세기 세종계획은 국어정보화를 위한 범국가적 사업으로서 국어 기초 자원을 구축하는데 매우 큰 기여를 하였으며, 그 주요 결과물로 배포된 세종 말뭉치는 많은 연구자들에게 꼭 필요한 가치있는 결과물이다. 이처럼 소중한 국어 자원을 실제 연구자들이 활용하고자 할 때 불편함을 느끼는 경우가 있는데 그 이유는 균형 말뭉치의 구축이라는 말뭉치의 특성 및 원문 자료의 내용을 최대한 보존하기 위한 노력의 일환으로 사용자 정의 영역에 정의된 문자들이 다수 포함되어 있기 때문이다. 본 논문에서는 자연언어 처리, 정보검색 분야 연구자들이 세종계획 최종 결과물 중에서 원시 말뭉치를 활용하는데 있어서 말뭉치에 사용된 문자코드의 유형을 중심으로 코드 변환 문제점과 그 해결 방안을 모색하고자 한다.

  • PDF

말 실수와 의미 및 음운 정보 처리: 실험식 유도 말실수의 분석

  • Go, Hye-Seon;Lee, Jeong-Mo
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.114-122
    • /
    • 1996
  • 그림자극의 명명에 있어서 이름의 의미유사성, 음운유사성, 그리고 처리부담(말속도, 기억 부담)이 말 실수 오류수와 명명 시간에 주는 영향을 알기 위해 2개의 실험이 실시되었다. 의미(유사/상이), 음운(유사/상이) 변인에 추가하여 실험 1에서는 말속도(330ms, 385ms, 770ms)의 변인이, 실험 2에서는 인지적 부담(높음/낮음)의 변인이 조작되었다. 두 실험의 결과, 의미유사성과 음운유사성, 그리고 인지적 처리 부담이 말 실수의 양과 그림자극 명명 시간이 증가시킴이 드러났다. '의미유사' 조건 및 '음운유사 조건'과 '의미-음운 모두 유사' 조건간의 말실수의 양의 차이는 말 산출 과정에서의 어휘 인출 과정에 대한 '독립적 2단계 모형'과 '활성화 상호작용 모형' 중 전자에 의해 더 잘 설명될 수 있음이 논의되었다.

  • PDF

Korean Polysemy Word-Sense-Disambiguation using MoDu-Corpus (모두의 말뭉치를 이용한 한국어 다의어 분별)

  • Shin, Joon-Choul;Lee, Ju-Sang;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.205-210
    • /
    • 2020
  • 한국어 자연어처리 분야가 발달하면서 동형이의어 분별을 한 단계 넘어선 다의어 분별의 중요성이 점점 상승하고 있다. 최근에 다의어가 태깅된 "모두의 말뭉치"가 발표되었고, 이 말뭉치는 다의어가 태깅된 최초의 공개 말뭉치로써 다의어 연구가 본격적으로 진행될 수 있음을 의미한다. 본 논문에서는 이 말뭉치를 학습하여 작동하는 다의어 분별의 초기 모델을 제시하며, 이 모델의 실험 결과는 차후 연구를 위한 비교 기준점이 될 수 있다. 이 모델은 딥러닝을 사용하지 않은 통계형으로 개발되었고, 형태소분석과 동형이의어 분별은 기존의 UTagger로 해결하고 말뭉치 자원 외에도 UWordMap을 사용하여 다의어 분별을 보조하였다. 이 모델의 정확률은 약 87%이며, 다의어 분별 전에 형태소분석 또는 동형이의어 분별 단계에서 오류가 난 것을 포함한다. 현재까지 공개된 이 말뭉치는 오직 명사만 다의어 주석이 있기 때문에 명사만 정확률 측정 대상이 되었다. 이 연구를 통하여 다의어 분별의 어려움과, 다의어 분별에는 동형이의어 분별과는 다른 방법이 필요하다는 것을 확인할 수 있었다.

  • PDF

Detecting errors on Korean POS tagged corpus using GMM (GMM을 이용한 품사 부착 말뭉치의 오류 탐지)

  • Choi, Min-Seok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Namgoong, Young;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.246-251
    • /
    • 2019
  • 품사 부착 말뭉치란 문장에 포함된 각 단어에 품사 표지를 부착한 말뭉치를 말한다. 이런 말뭉치에는 다양한 형태의 오류들이 포함되어 있으며, 오류가 포함된 말뭉치를 학습 자료로 사용하는 자연언어처리 시스템의 좋은 성능을 기대할 수 없다. 따라서 말뭉치의 일관성이나 정확도는 자연언어처리 시스템의 성능에 많은 영향을 준다. 하지만 말뭉치 구축 과정에서 작업자의 실수가 발생하고 여러 작업자가 작업을 수행하다 보니 일관성을 유지하기가 쉽지 않다. 본 논문에서는 이러한 문제를 해결하기 위해서 GMM을 이용한 군집화를 수행하여 오류 후보를 추출한다. 이를 통해서 말뭉치 구축 과정에서 작업자의 실수를 방지하고 일관성을 유지하고자 한다. 세종품사부착 말뭉치를 대상으로 임의로 오류를 유발시켜 실험한 결과, 재현율 84.74%의 성능으로 오류를 탐지하였다. 향후에 좀 더 높은 재현율을 위해서 자질 확장이나 회귀 분석 방법 등을 추진할 계획이다.

  • PDF

Kane: Knowledge Annotation Tool for Semantic Information (Kane: 의미정보 말뭉치 구축 도구)

  • Bae, Won-Sik;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.121-125
    • /
    • 2009
  • 본 논문에서는 의미정보 말뭉치 구축 도구인 Kane에 대해 설명한다. 형태소 분석기나 구문 분석기, 개체명 인식기 등 자연어처리를 위한 기본이 되는 시스템에는 말뭉치가 필요하며, 말뭉치의 구축에는 많은 비용이 든다. 일반적으로 말뭉치 구축 작업은 전용 구축 도구가 없이 문서 편집기를 사용하여 이루어지는 경우가 많아 말뭉치 구축 작업 효율이 떨어지고, 자연스럽게 구축되는 말뭉치의 품질도 낮아진다. 문서 편집기를 사용할 때 발생하는 대표적인 문제는 키보드를 이용한 기계적인 작업이 반복된다는 것이며, 키보드 입력에 따른 오타 문제 또한 발생한다. Kane에서는 기계적인 작업 및 키보드 입력을 간편한 인터페이스를 통해 최소화하였으며, 마우스 조작으로도 쉽게 말뭉치를 구축할 수 있다. 또한 사전을 이용한 이전 작업 내용 참조 기능을 지원하여 작업의 효율성 및 일관성 문제를 개선하고자 하였다.

  • PDF

Automatic Correction of Errors in Annotated Corpus Using Kernel Ripple-Down Rules (커널 Ripple-Down Rule을 이용한 태깅 말뭉치 오류 자동 수정)

  • Park, Tae-Ho;Cha, Jeong-Won
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.636-644
    • /
    • 2016
  • Annotated Corpus is important to understand natural language using machine learning method. In this paper, we propose a new method to automate error reduction of annotated corpora. We use the Ripple-Down Rules(RDR) for reducing errors and Kernel to extend RDR for NLP. We applied our system to the Korean Wikipedia and blog corpus errors to find the annotated corpora error type. Experimental results with various views from the Korean Wikipedia and blog are reported to evaluate the effectiveness and efficiency of our proposed approach. The proposed approach can be used to reduce errors of large corpora.

Corpus Data Extracting Tool for Sejong Text Corpus (세종 문어체 말뭉치를 위한 말뭉치 데이터 추출 도구)

  • Park, Il-Nam;Jang, Wu-Seok;Kang, Seung-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.1102-1105
    • /
    • 2010
  • 본 논문에서는 세종 말뭉치 데이터를 활용할 때 한글코드의 변환 및 말뭉치에서 필요한 정보 추출 등 한국어 말뭉치에서 통계 정보를 추출하는데 사용되는 여러 가지 기능들을 한데 묶어, 말뭉치 작업의 사용자 편의성을 개선시키기 위한 도구를 설계, 구현하였다. 이 말뭉치 활용 도구는 세종 말뭉치의 원시, 형태, 형태의미, 구문 말뭉치들을 다양한 옵션에 따라 사용자가 원하는 데이터를 추출할 있을 뿐만 아니라 일반적인 한글 텍스트 파일에 공통적으로 사용되는 코드 변환, 파일 합병, 빈도 계산 등을 제공하기 때문에 말뭉치 작업을 하는 사용자들이 편리하게 사용할 수 있게 하였다.