딥러닝을 활용한 말 개체 식별 프레임워크

김서윤¹, 서보산², 정승진³, 장기영⁴

¹건국대학교 응용통계학과 학부생

²수원대학교 사학과 학부생

³경상국립대학교 항공우주및소프트웨어공학부 학부생

⁴한국마사회 정보화사업부 장기영 과장

sy901504@konkuk.ac.kr, bsseo@suwon.ac.kr, geun0196@gnu.ac.kr, ky.jang@kra.co.kr

Horse Entity Identification Framework using Deep Learning

Seo-Yun Kim¹, Bosan Seo², SeungJin Jung³, Ki-Young Jang⁴

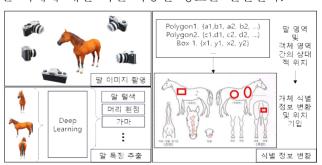
¹Dept. of Applied Statistics, Kon-kuk University

²Dept. of College of Humanities & Social Sciences, Suwon University

³Dept. of Aerospace and software engineering, Gyoungsang national university

⁴Dept. of IT Business Team, Korea Racing Authority

본 논문은 말의 개체 식별 과정에 딥러닝을 활용하여 객관적으로 식별 가능한 개체의 특징을 획득할 수 있는 영상처리 기반의 말 개체 식별 자동화 프레임워크를 제안한다. 제안하는 프레임워크는 말의 개체 식별을 위한 이미지 촬영 방법, 딥러닝을 활용한 말의 특징 추출 방법, 말 객체에 대한 식별 가능 정보의 변환 방법으로 구성되어 있으며, 본 논문에서 제시하는 방법론을 바탕으로 말 개체 식별 과정을 자동화하여 말의 특징을 객관적이고 효율적으로 추출하여 말 개체 관리를 하고자 한다.


1. 서론

말 개체 식별은 말의 외형적 특징과 생체정보 (DNA, 혈액형 등) 등을 통해 그 말을 명확히 인지하는 것으로 말 복지증진과 보호, 혈통보존 등을 위한 말산업 정책의 시작점이다. 본 논문에서는 기존전문가 육안관측에 의존한 말의 외형적 특징에 의한 개체 식별 방식에서 나아가, 딥러닝 영상처리 기반의말 개체 식별 자동화 프레임워크를 제안한다.

2. 본론

말의 개체를 식별하기 위해서는, 말의 털색, 머리 흰점, 다리 흰점, 입술의 점, 새치, 가마, 눈 등 여러부위에 대한 특징들이 고려되어야 한다. 이를 위해, 말 특징과 특징 도해를 활용한 개체식별 방법들[1]이 존재하지만, 사람이 직접 눈으로 확인하는 과정이 필요하며, 말의 특징에 대한 숙련된 전문가가 수행하더라도 주관적 판단이 개입되므로 이에 대한 객관적 결과 도출을 위한 기술이 필요하다. 이러한 문제를 해결하기 위해, 본 논문에서는 딥러닝을 활용한 영상처리 기반의 말 개체 식별 자동화 프레임워크를 제안한다. 제안하는 프레임워크에 대한 도식은그림 1과 같다. 먼저 개체식별을 위해 필요한 말 머

리, 눈, 정면, 좌·우 측면, 후면, 앞·뒷다리 등 총 15종의 이미지를 촬영한다. 그리고 각 이미지로부터 딥러닝을 통해 개체식별에 필요한 말, 점, 눈, 가마 등여러 부위에 대한 검출 및 영상 분할을 수행하여 특징을 추출한다. 최종적으로, 추출된 결과물을 토대로말 객체에 대한 식별 가능한 정보를 변환한다.

(그림 1) 프레임워크 도식.

1) 말 개체 식별을 위한 이미지 촬영 방법

말의 머리 이미지의 경우 중심선을 기준으로 대칭이 되도록 촬영하고, 귀와 아래 입술이 보이도록 촬영하여 머리 내에 존재하는 특징들을 전체적으로 포함할 수 있게 한다. 또한, 말의 전신이 촬영되는 측면 이미지의 경우 말과 카메라가 수평에 위치하도록 조성 후 촬영하며 말의 입술 끝점부터 꼬리 시작

점까지 전체 부위가 나오도록 촬영하여 말의 전신에 위치한 다양한 특징들을 포함할 수 있게 한다. 위의 경우와 마찬가지로 전면, 측면, 다리 이미지 등도 해 당 부위에 대한 특징들을 잘 포함할 수 있도록 촬영 한다. 말 개체 식별을 위한 이미지 촬영 예시는 그 림 2와 같다.

(그림 2) 말 부위별 촬영 예시.

2) 딥러닝을 활용한 말 특징 추출 방법

말 개체 식별을 위한 말 특징 추출 방법으로 영 상을 기반으로 하는 딥러닝 기술을 활용할 수 있다.

말 머리, 다리 등에 존재하는 흰점과 관련된 특 징들을 추출하기 위해서는 Segmentation 기법을 활 용하여 흰점 영역을 추출하고 흰점의 모양을 추론해 볼 수 있다. 이 때 활용 가능한 Segmentation 기법 으로는 SegFormer[2] 혹은 Mask2Former[3] 등이 존재한다. 말 머리 및 전신에 존재 가능한 가마의 경우 Object Detection 기법을 활용하여 가마의 위 치와 크기를 찾아내고 모양을 추론해 볼 수 있다. 대표적인 Object Detection 기법으로는 YOLOv8[4] 등의 모델이 존재한다. 말의 털색을 구분하거나 영 상 분할, 검출을 통해 획득한 클래스를 한번 더 검 증하기 위한 방법으로는 Image Classification 기법 을 활용할 수 있다. 이미지의 클래스를 사전 정의된 클래스 중 하나로 구분하는 기법으로 EfficientNet[5] 등의 모델이 존재한다.

(그림 3) 말 부위별 딥러닝 활용 말 특징 추출 예시.

3) 말 객체에 대한 식별 가능 정보 변환 방법

딥러닝을 활용해 말의 특징들을 추출한 후에는 말의 털색, 눈의 모양 등의 식별 가능 정보는 딥러 닝 모델이 추론한 결과를 그대로 사용할 수 있으며, 말 머리, 다리 등에 존재하는 흰점, 가마의 위치와 모양 등은 말 머리, 다리, 전신 등의 기준 부위에 대한 딥러닝 모델 추론 결과를 상대적인 위치로 하여 해당 특징들이 말 객체 내에 존재하는 위치를 찾아 개체식별을 위한 특징 정보로 활용한다.

3. 결론

말 개체 식별 과정에 딥러닝 기술을 활용할 경우, 말의 외형적 특징을 객관적이고 효율적으로 처리할 수 있다. 또한 말 등록 과정이 디지털로 전환될 수 있어 마주와 등록기관의 편의성을 증진 시킬 수 있 으며, 정보통신망 기반의 간편한 말 등록으로 말 등 록률을 제고하고 말 복지증진 등 말산업 정책에 기 여할 수 있다. 대표적으로 종이 형태의 말 패스포트 를 디지털화함으로써 수출입 시, 검역과 방역 체계 를 고도화하고 말 유통 체계를 개선할 수 있다

※ 본 논문은 과학기술정보통신부 정보통신창의인재양성사업의 지원을 통해 수행한 ICT멘토링 프로젝트 결과물 입니다.

참고문헌

[1] 말산업정보포털 내 개체식별요령 https://www.horsepia.com/hp/pa/hh/HI1040C_003_0 02 004.do

[2] Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M., & Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Advances in Neural Information Processing Systems, 34, 12077–12090. (2021)

[3] Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., & Girdhar, R. Masked-attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1290–1299). (2022)

[4] YOLOv8: https://docs.ultralytics.com/

[5] Tan, M., & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, PMLR. (pp. 6105–6114). (2019)