• Title/Summary/Keyword: 말단 간극

Search Result 4, Processing Time 0.025 seconds

Effect of Amino Terminus of Gap Junction Hemichannel on Its Channel Gating (간극결합채널의 아미노말단이 채널개폐에 미치는 영향)

  • Yim Jaegil;Cheon Misaek;Jung Jin;Oh Seunghoon
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Gap junction is an ion channel forming between adjacent cells. It also acts as a membrane channel like sodium or potassium channels in a single cell. The amino acid residues up to the $10^{th}$ position in the amino (N)-terminus of gap junction hemichannel affect gating polarity as well as current-voltage (I-V) relation. While wild-type Cx32 channel shows negative gating polarity and inwardly rectifying I-V relation, T8D channel in which threonine residue at $8^{th}$ position is replaced with negatively charged aspartate residue shows reverse gating polarity and linear I-V relation. It is still unclear whether these changes are resulted from the charge effect or the conformational change of the N-terminus. To clarify this issue, we made a mutant channel harboring cysteine residue at the $8^{th}$ position (T8C) and characterized its biophysical properties using substituted-cysteine accessibility method (SCAM). T8C channel shows negative gating polarity and inwardly rectifying I-V relation as wild-type channel does. This result indicates that the substitution of cysteine residue dose not perturb the original conformation of wild-type channel. To elucidate the charge effect two types of methaenthiosulfonate (MTS) reagents (negatively charged $MTSES^-$ and positively charged $MTSET^+$) were used. When $MTSES^-$ was applied, T8C channel behaved as T8D channel, showing positive gating polarity and linear I-V relation. This result indicates that the addition of a negative charge changes the biophysical properties of T8C channel. However, positively charged $MTSET^+$ maintained the main features of T8C channel as expected. It is likely that the addition of a charge by small MTS reagents does not distort the conformation of the N-terminus. Therefore, the opposite effects of $MTSES^-$ and $MTSETT^+$ on T8C channel suggest that the addition of a charge itself rather than the conformational change of the N-terminus changes gating polarity and I-V relation. Furthermore, the accessibility of MTS reagents to amino acid residues at the $8^{th}$ position supports the idea that the N-terminus of gap junction channel forms or lies in the aqueous pore.

Heat/Mass Transfer Characteristics on Shroud with Turbine Blade Tip Clearances (터빈 블레이드 말단과 슈라우드 사이의 간극변화에 따른 슈라우드에서의 열/물질전달 특성)

  • Lee, Dong-Ho;Choe, Jong-Hyeon;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.414-421
    • /
    • 2001
  • The present study is conducted to investigate the local heat/mass transfer characteristics on the shroud with blade tip clearances. The relative motion between blade and shroud has little influence on the overall heat transfer characteristics, except some local effects. Therefore, the relative motion between the blade and shroud is neglected in this study. A naphthalene sublimation method is employed to determine the detailed local heat/mass transfer coefficients on the surface of the shroud. The tip clearance is changed from 0.66% to 2.85% of the blade chord length. The flow enters the gap between the blade tip and shroud at the pressure side due to the pressure difference. Therefore, the heat/mass transfer characteristics on the shroud are changed significantly from those with endwall. At first, high heat/mass transfer occurs along the profile of blade at the pressure side due to the entrance effect and acceleration of the gap flow. Then, the heat/mass transfer coefficients on the shroud increase along the suction side of the blade because tip leakage vortices are generated and interact with the main flow. The results show that the heat/mass transfer characteristics are changed largely with the gap distance between the tip of turbine blade and the shroud.

Numerical Study of Leakage Flow Characteristics by Tip Clearance of Turbine Cascades (터빈익렬 말단간극에 따른 누설유동특성에 대한 수치해석적 연구)

  • Yang S. Y.;Myong H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.102-108
    • /
    • 2002
  • Numerical analysis has been conducted in order to simulate the flow characteristics by tip clearance of turbine cascades. A 3-D Navier-Stokes CFD code based on body-fitted coordinate system, pressure-correction and finite volume method has been used along with a commercial CFD code. The present results have showed that the development and generation of leakage vortex, vortex within tip clearance, etc. are clearly simulated, consistent with the generally known tendency. The leakage vortex occurs mainly by a separation of leakage flow that arises due to a pressure difference between two surfaces of the blade at the tip.

  • PDF

Single Channel Analysis of Xenopus Connexin 38 Hemichannel (제노푸스 Cx38 세포막채널의 단일채널분석)

  • Cheon, Mi-Saek;Oh, Seung-Hoon
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1517-1522
    • /
    • 2007
  • Gap junction channels formed by two adjacent cells allow the passage of small molecules up to ${\sim}\;1\;kDa$ between them. Hemichannel (connexon or half of gap junction) also behaves as a membrane channel like sodium or potassium channels in a single cell membrane. Among 26 types of connexin (Cx), $Cx32^*43E1$ (a chimera in which the first extracellular loop of Cx32 has been replaced with that of Cx43), Cx38, Cx46, and Cx50 form functional hemichannels as well as gap junction channels. Although it is known that Xenopus oocytes express endogenous connexin 38 (Cx38), its biophysical characteristics at single channel level are poorly understood. In this study, we performed single channel recordings from single Xenopus oocytes to acquire the biophysical properties of Cx38 including voltage-dependent gating and permeation (conductance and selectivity). The voltage-dependent fast and slow gatings of Cx38 hemichannel are distinct. Fast gating events occur at positive potentials and their open probabilities are low. In contrast, slow gatings dominate at negative potentials with high open probabilites. Based on hi-ionic experiments, Cx38 hemichannel is anion-selective. It will be interesting to test whether charged amino acid residues in the amino terminus of Cx38 are responsible for voltage gatings and permeation.