• Title/Summary/Keyword: 막-전극 접합체(MEA)

Search Result 32, Processing Time 0.021 seconds

Evaluation of the Performance of Water Electrolysis Cells and Stacks for High-Altitude Long Endurance Unmanned Aerial Vehicle (고고도 무인기용 수전해 셀 및 스택의 제작 및 성능 평가)

  • JUNG, HYE YOUNG;LEE, JUNYOUNG;YOON, DAEJIN;HAN, CHANGHYUN;SONG, MINAH;LIM, SUHYUN;MOON, SANGBONG
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.4
    • /
    • pp.341-348
    • /
    • 2016
  • The experiments related on structure and water electrolysis performance of HALE UAV stack were conducted in this study. Anode catalyst $IrRuO_2$ was prepared by Adam's fusion methods as 2~3 nm nano sized particles, and the cathode catalyst was used as commercial product of Premetek. The MEA (membrane electrode assembly) was manufactured by decal methods, anode and anode catalytic layers were prepared by electro-spray. HALE stack was composed of 5 multi-cells as $0.2Nm^3/hr$ hydrogen production rate with hydrogen pressure as 10 bar. The water electrolysis performance was investigated at atmospheric pressure and temperature of $55^{\circ}C$. Best performance of HALE UAV stack was recorded as cell voltage efficiency as 86%.

Double-layered Polymer Electrolyte Membrane based on Sulfonated Poly(aryl ether sulfone)s for Direct Methanol Fuel Cells (직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 이중층 고분자 전해질 막의 제조 및 특성)

  • Hong, Young-Taik;Ko, Ha-Na;Park, Ji-Young;Choi, Jun-Kyu;Kim, Sang-Un;Kim, Hyung-Joong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.291-301
    • /
    • 2009
  • Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.

Application Study of An On-site Hydrogen Production System for Power Generator Cooling (발전기 냉각용 On-Site 수소 생산 시스템 적용연구)

  • Moon, Jeon-Soo;Lee, Jae-Kun;Park, Pyl-Yang;Park, Kyoung-Il
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.5
    • /
    • pp.410-415
    • /
    • 2009
  • A hydrogen cooling method is used in a power generator for removing the unnecessary heat due to the windage loss of a rotor and the joule heat of a stator. A MEA (Membrane Electrolyte Assembly) hydrogen generator has been developed and applied as a hydrogen supplying system for the cooling of a 350MW power generator. As a field application result, the average potential of eleven cells and the voltage efficiency were measured 2.26V/cell and 65.4% (Higher Heating Value) respectively at the hydrogen pressure of 6 Bar, the hydrogen flow rate of 9.1L/min, and the current of 150A.

Development of portable DMFC systems (휴대용 직접 메탄올 연료전지 시스템 개발)

  • Moon, Go-Young;Kim, Hyuk;Yoo, Hwang-Chan;Noh, Tae-Geun;Lee, Won-Ho
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.46-53
    • /
    • 2007
  • Direct Methanol Fuel Cell, DMFC is a potential power source for portable IT application. DMFC works at low temperature ($<100^{\circ}C$) without fuel processing. Methanol has high energy density, fuel economy, and easiness to handle. This paper focuses high efficient catalyst to increase utilization in the electrode, new membrane reducing methanol crossover, new material parts, and optimization of system integration. Lightweight and small-sized DMFC based on new materials, efficient stack, and improved system control will be applied to the 50W prototype system for the notebook computer.

  • PDF

Development and Application of High Temperature Proton Exchange Membrane Fuel Cells (고온형 고분자전해질연료전지용 MEA 개발 및 응용)

  • Lim, Tae-Hoon;Kim, Hyoung-Juhn
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.4
    • /
    • pp.439-445
    • /
    • 2007
  • Proton exchange membrane Fuel Cells(PEMFCs) have been spotlighted because of their broad potential application for potable electrical devices, automobiles and residential usages. However, their utilization is limited to low temperature operation due to the electrolyte dehydration at high temperature. High temperature PEMFC operation offers high CO tolerance and easy water management. This review presents development of high temperature($120{\sim}200^{\circ}C$) PEMFC. Especially, PEMFC which is based on acid-doped PBI membrane is discussed.

Effects of Nafion Contents on the Performance of MEAs Prepared by Decal-Transfer Method (Nafion 함량이 데칼전사기법을 통해 제작된 고분자 전해질 연료전지의 MEA 성능에 미치는 영향)

  • Kim, Gyeong-Hee;Cho, Eun-Ae;Han, Jong-Hee;Kim, Sung-Hyun;Eom, Kwang-Sup
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2012
  • Nafion ionomer located in electrode helps to increase the platinum utilization and proton conductivity. To achieve higher performance in PEMFCs, it is important an optimum Nafion content in the electrode. As the platinum loading and fabricated method depend on the optimum Nafion content. In this study, we have examined the interrelationship between platinum loading and Nafion content fabricated by decal transfer method. For electrodes with 0.25 and 0.4 mg/$cm^2$ Pt loading, best performance was obtained at 25 wt.% Nafion ionomer loading. It is also found that MEA with 0.25 mg/$cm^2$ Pt, the optimum Nafion content appears differently at low and high current density.

Analyzing the Effects of MEA Designs on Cold Start Behaviors of Automotive Polymer Electrolyte Fuel Cell Stacks (자동차용 고분자전해질형연료전지 스택에서의 막-전극접합체 설계인자가 저온시동에 미치는 영향성 연구)

  • Gwak, Geon-Hui;Ko, Jo-Han;Ju, Hyun-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • This paper presents a three-dimensional, transient cold-start polymer electrolyte fuel cell (PEFC) model to numerically evaluate the effects of membrane electrode assembly (MEA) design and cell location in a PEFC stack on PEFC cold start behaviors. The cold-start simulations show that the end cell experiences significant heat loss to the sub-freezing ambient and thus finally cold-start failure due to considerable ice filling in the cathode catalyst layer. On the other hand, the middle cells in the stack successfully start from $-30^{\circ}C$ sub-freezing temperature due to rapid cell temperature rise owing to the efficient use of waste heat generated during the cold-start. In addition, the simulation results clearly indicate that the cathode catalyst layer (CL) composition and thickness have an substantial influence on PEFC cold-start behaviors while membrane thickness has limited effect mainly due to inefficient water absorption and transport capability at subzero temperatures.

Electrochemical Characteristics of Pt/PEM/Pt-Ru MEA for Water Electrolysis (수전해용 Pt/PEM/Pt-Ru MEA의 전기화학적 특성)

  • Kweon, Oh-Hwan;Kim, Kyung-Eon;Jang, In-Young;Hwang, Yong-Koo;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.

Experimental Validation of a Direct Methanol Fuel Cells(DMFCs) model with a Operating Temperatures and Methanol Feed Concentrations (직접메탄올 연료전지의 농도 및 온도변화에 따른 실험적 검증)

  • Kang, Kyungmun;Ko, Johan;Lee, Giyong;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.125.2-125.2
    • /
    • 2010
  • In this paper, both theoretical and experimental investigations have been performed to examine the effects of key operating parameters on the cell performance of a DMFCs (i.e., methanol feed concentration and operating temperature). For experiment, the membrane electrode assemblies (MEAs) were prepared using a conventional MEA fabrication method based on a catalyst coated electrode (CCE) and tested under various cell temperatures and methanol feed concentrations. The polarization curve measurements were conducted using in-house-made $25cm^2$ MEAs. The voltage-current density data were collected under three different cell temperatures ($50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$) and four different methanol feed concentrations (1 M, 2 M, 3 M, and 4 M). The experimental data indicate that the measured I-V curves are significantly altered, depending on these conditions. On the other hand, previously developed one-dimensional, two-phase DMFC model is simulated under the same operating conditions used in the experiments. The model predictions compare well with the experimental data over a wide range of these operating conditions, which demonstrates the validity and accuracy of the present DMFC model. Furthermore, both simulation and experimental results exhibit the strong influences of methanol and water crossover rates through the membrane on DMFC performance and I-V curve characteristics.

  • PDF

Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells (AAO를 사용한 고분자전해질 연료전지의 공기극 촉매층 구조 제어)

  • Cho, Yoon-Hwan;Cho, Yong-Hun;Jung, Nam-Gee;Ahn, Min-Jeh;Kang, Yun-Sik;Chung, Dong-Young;Lim, Ju-Wan;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 2012
  • The cathode catalyst layer in polymer electrolyte membrane fuel cells (PEMFCs) was fabricated with anodic aluminum oxide (AAO) template and its structure was characterized with scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The SEM analysis showed that the catalyst layer was fabricated the Pt nanowire with uniform shape and size. The BET analysis showed that the volume of pores in range of 20-100 nm was enhanced by AAO template. The electrochemical properties with the membrane electrode assembly (MEA) were evaluated by current-voltage polarization measurements and electrochemical impedance spectroscopy. The results showed that the MEA with AAO template reduced the mass transfer resistance and improved the cell performance by approximately 25% through controlling the structure of catalyst layer.