• Title/Summary/Keyword: 막장붕락

Search Result 15, Processing Time 0.022 seconds

Stability Assessment of Tunnel Excavation Face Utilizing Characteristics of Collapse Cases (터널 시공현장 붕괴 사례를 이용한 막장의 안정성 평가 연구)

  • Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • While shield tunneling has demonstrated stability in international cases, the new Austrian tunneling method (NATM) encounters challenges in urban environments with shallow cover, weathered ground, and high groundwater levels. This paper introduces two typical collapse scenarios observed in urban areas, specifically within weathered bedrock and uncemented sandy soil layers. The collapses are analyzed using six stability evaluation methods, and the results are synthesized to assess the excavation face stability through a hexagonal diagram. The study finds a consistent agreement between the analysis results of the two collapsed tunnel sites and the evaluation outcomes. The employment of the stability evaluation diagram, a comprehensive method that considers the ground characteristics of the target tunnel, proves crucial for ensuring barrier stability during the tunnel design stage. This method is essential for a holistic evaluation, especially when addressing challenging ground conditions in urban settings.

Analysis of geological conditions and water bearing zones in front of tunnel face using TSP (TSP탐사를 이용한 터널 굴착면 전방 지질상태 및 함수대 분석)

  • Kyounghak Lim;Yeonjun Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.373-386
    • /
    • 2023
  • To analyze the prediction of geological conditions and water-bearing zones, TSP was performed in the collapse zone of the fault zone. The results of the TSP were verified by comparing them to the face mapping results of the prediction zone. The rock quality prediction result of the TSP had an error of about 3 to 10 meters compared to the face mapping result, but the overall rock quality change and ground condition were analyzed to be relatively similar. In the water-bearing zones of the face mapping results, the Vp/Vs ratio ranges from 1.79 to 2.37 and the Poisson's ratio ranges from 0.27 to 0.39. In the sections other than the water-bearing zones, the Vp/Vs ratio ranges from 1.61 to 1.89, and the Poisson's ratio ranges from 0.19 to 0.3. As a result of analyzing the Vp/Vs ratio and Poisson's ratio in the water-bearing zones, it is analyzed that the sections with a Vp/Vs ratio of 2.0 or more and a Poisson's ratio of 0.3 or more have a high possibility of being water-bearing zones.

Rock Classification Prediction in Tunnel Excavation Using CNN (CNN 기법을 활용한 터널 암판정 예측기술 개발)

  • Kim, Hayoung;Cho, Laehun;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.37-45
    • /
    • 2019
  • Quick identification of the condition of tunnel face and optimized determination of support patterns during tunnel excavation in underground construction projects help engineers prevent tunnel collapse and safely excavate tunnels. This study investigates a CNN technique for quick determination of rock quality classification depending on the condition of tunnel face, and presents the procedure for rock quality classification using a deep learning technique and the improved method for accurate prediction. The VGG16 model developed by tens of thousands prestudied images was used for deep learning, and 1,469 tunnel face images were used to classify the five types of rock quality condition. In this study, the prediction accuracy using this technique was up to 83.9%. It is expected that this technique can be used for an error-minimizing rock quality classification system not depending on experienced professionals in rock quality rating.

The Ground Reinforcement on Daylight Collapsed Block of Crown Head in the Face of the Tunnel of Highway (고속도로 터널막장 천단부의 붕락구간에 대한 지반보강)

  • 천병식;정덕교;한기식;정진교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.323-330
    • /
    • 1999
  • Daylight collapse have been occurred by about 5.0m deep at ground surface and collapse of the crown head part of the tunnel have connected to the ground surface during first step of shotcrete work after blasting of upper half section of the tunnel driving at two-way double track tunnel face section on highway construction. This study is for a successful illustration case for the earth improvement method through applying such strengthening methods as cement milk grouting, S.G.R grouting,, steel pipe reinforced multi-step grouting etc. for the purpose of earth strengthening of loosened earth block occurred by tunnel collapse.

  • PDF

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.