• Title/Summary/Keyword: 막여과 시스템

Search Result 110, Processing Time 0.027 seconds

Preparation and Properties of Membranes for the Application of Desalting, Refining and Concentrating for Dye Processing (염료의 탈염/정제/농축처리용 분리막의 제조 및 특성평가)

  • Nam Sang-Yong;Jang Jae-Young;Chung Youn-Suk;Lee Young-Moo
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.213-220
    • /
    • 2006
  • Microfiltration and Nanofiltration membrane were prepared and properties of the membrane system were studied for the application of desaltingfrefiningiconcentrating process of dye production. The membrane system improved the quality of dye produce and productivity was enhanced due to reduction of processing steps and material cost. Membrane and pressure type membrane element in various dye concentration for using desaltingirefiningiconcentrating of dye processing were investigated.

한외여과 관형막에서 대류촉진체의 영향

  • 민병렬;최안섭;진양기
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.46-47
    • /
    • 1996
  • 막분리 공정의 공업적인 이용을 위해서는 막을 특정 용기에 적재한 모듈의 형태가 요구되는데 모듈의 형태에 따라 평판형(plate and frame), 나권형(spiral wound), 관형(tubular), 중공사형(hollow fiber)모듈 등이 있다. 이 중에서 관형 시스템은 내경이 12.5~25 mm, 길이 0.6~6.4 m에 이르는 비교적 큰 open channel로 되어 있으며 공급액 유로가 일반적으로 커서 전처리를 행하지 않고도 fouling이 적으며, 또한 막 표면의 세정이 약품에 의한 것 이외에 스폰지 볼 등에 의한 물리적 세정도 가능하므로 응용 범위가 넓다는 것이 특징이다. 한외여과 공정의 가장 큰 문제점은 농도분극 및 fouling 현상에 의한 플럭스 감소이다. 농도분극 현상은 경계층에서 용질의 대류,확산적인 전달에 기인하여 막 표면으로 갈수록 진해지는 용액층의 형성을 의미한다. 이 현상은 가역적인 과정으로서 감압함으로 원상태로 회복이 가능하며 조작 압력에서 정상상태가 되면 막투과 플럭스는 일정한 값을 유지한다.

  • PDF

Application of Microfiltration and Reverse Osmosis System to Sewage Reuse for Industrial Water (하수를 공업용수로 재이용하기 위한 정밀여과 및 역삼투 시스템 적용에 관한 연구)

  • 강신경;이해군;김지원
    • Membrane Journal
    • /
    • v.12 no.3
    • /
    • pp.151-157
    • /
    • 2002
  • This research was to demonstrate the Possibility of sewage reuse for industrial purpose with use of membrane system. A bench scale test with microfiltration and reverse osmosis showed that microfiltration in the sewage treatment was not able to remove the soluble salts but 70% suspended solids (SS), suggesting that the treated water could be used as direct cooling water. In addition, the reverse osmosis removed not only soluble salts but also 95% SS, proposing that reverse osmosis-treated water could be used as both indirect cooling water and rinsing water. For a 100 ton/day pilot plant, 20 and 12 elements of microfiltration and reverse osmosis were required, respectively.

Use of a Combined Photocatalysis/Microfiltration System for Natural Organic Matter Removal (광촉매 반응과 침지형 정밀여과를 이용한 자연산 유기물의 제거)

  • 추광호;박경원;김문현
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.149-156
    • /
    • 2004
  • This work focused on the degradation of natural organic matter (NOM) present in lake water using a combined pkotocatalysisimicrofiltration (MF) process. The system performances were investigated in terms of organic removal efficiency and membrane permeability. The addition of iron oxide particles (IOP) into the photocatalytic membrane reactor improved initial NOM removal by sorption, but during photocatalysis the removal efficiency was reversed, probably due to the scattering of UV light by IOP. The modification of TiO$_2$ surfaces by IOP deposition was conducted to enhance the photocatalytic NOM removal efficiency. A minimal amount of Impregnation of IOP on TiO$_2$ surfaces was required to prevent the light scattering effect as well. The coating of MF membranes with IOP helped to improve the NOM removal efficiency while sorbing NOM by IOP. Regardless of tile operating conditions and particles addition examined, no significant fouling was occurring at a flux of 15 L/$m^2$-h during entire MF operation.

Effect of Cross-flow Velocity and TMP on Membrane Fouling in Thermophilic Anaerobic Membrane Bioreactor Treating Food Waste Leachate (음식물 침출수를 처리하는 막결합 고온혐기성 소화시스템에서 교차여과와 막간압력이 파울링에 미치는 영향)

  • Kim, Young-O;Jun, Duk-Woo;Yoon, Seong-Kyu;Chang, Chung-Hee;Bae, Jae-Ho;Yoo, Kwan-Sun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The effect of cross-flow velocity and transmembrane pressure (TMP) on membrane fouling was observed from pilot-scale operation of thermophilic anaerobic membrane bioreactor (AnMBR) treating food waste leachate. It was found that fouling rate was reduced significantly as cross-flow velocity increased at constant TMP mode of operation while this effectiveness was more pronounced at lower TMP. Higher TMP resulted in less permeable fouling layer possibly due to compressibility of foulant material on membrane surface. Particle sizes of membrane concentrate ranged from 10 to $100{\mu}m$, implying that shear-induced diffusion enhance back transport of these particle sizes away from the membrane effectively. From the continuous operation of AnMBR, it was confirmed that shear rate played an important role in the reduction of membrane fouling. Membrane autopsy works at the end of operation of AnMBR showed clearly that both organic and inorganic fouling were significant on membrane surface. Surface shear by cross-flow velocity was expected to be less effective to remove irreversible fouling which can be mainly caused by the adsorption of organic colloidal materials into membrane pores.

The Effect of Chemical Backwash on Filtration Performance of Batch Membrane Filtration System (회분식 막여과 시스템에서 약품역세가 여과성능에 미치는 영향)

  • Kim, Kwan Yeop;Lee, Eui Jong;Kwon, Jin Sub;Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.855-864
    • /
    • 2009
  • The main object of this work was to determine the influence of periodic chemical backwash on filtration resistance in membrane filtration system. In this work Hermia's models were used to investigate the fouling mechanisms involved in the microfiltration of $0.45{\mu}m$ filtered sewage feed. Batch microfiltration experiments were performed at transmembrane pressure 0.4 bar and different feed SCOD concentration (9~67 mgSCOD/L). The results showed that the best fit to experimental data corresponded to the intermediate blocking model followed by the standard and complete blocking model for all the experimental conditions tested. From the simulation results of filtration performance, it was found that in order to maintain sustainable operation of membrane filtration system, irreversible foulant component accumulated continuously on membrane surface and/or pore must be effectively removed. In addition, it was verified that periodic chemical backwash using NaOCl or NaOH effectively improved filtration performance of membrane.

Characteristics of Membrane Permeability on the Separation of Solid in a Liquid Livestock Manure (축분액비의 고액분리에 있어서 분리막의 투과특성)

  • 황명구;차기철;이명규
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 2000
  • A lab-scale MF membrane reactor was installed to investigate the membrane permeability, characteristics of membrane fouling at each conditions, and quality of permeate (liquid livestock manure) in the separation of solid-matters using membrane. Experiment was divided three filtration type such as follows; continuous filtration, gravity filtration, and intermittent filtration. As a result of experiment, flux 1 LMH was maintained for 7days, and trans-membrane pressure(TMP) was increased gradually under 10cmHg, but it was increased immediately after 10cmHg, respectively. However, the flux was increased, the Tmax was decreased exponential more and more. During the pure-flux test, most of the fouling of membrane was reversible. At the gravity filtration, permeate could be obtained as 1.75 LMH for 3.5days without any other electronic pressure. As an investigation of membrane surface, this study could be decided that the reason of fouling at the lower flux (Run 1 and 2) was attached matters in membrane surface, but at the higher flux (Run 4-6) was concentration polarization.

  • PDF

Influence of Membrane Material and Structure on Fouling of a Submerged Membrane Bioreactor (침지형 막 분리 활성슬러지법에서 막의 재질 및 구조가 파울링에 미치는 영향)

  • Choi, Jae-Hoon;Kim, Hyung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • This work was performed to evaluate the effect of membrane material and structure on fouling in a submerged membrane bioreactor(MBR). Three types of microfiltration membranes with the same pore size of 0.1 $\mu$m but different materials, polytetrafluoroethylene (PTFE), polycarbonate(PCTE) and polyester(PETE), were used. While PETE membrane exhibited the most rapid flux decline throughout the operation, PCTE and PTFE had a similar tendency with regard to permeability. Difference in permeability between PETE and the other membranes gradually decreased with time, which was probably due to chemical cleaning. The higher TOC rejection of PETE membrane could be attributable to its faster fouling, resulting from a larger amount of foulants to get attached to the membrane in a shorter time. DOC fractionation using a DAX-8 resin showed that the composition of each fraction between the supernatant and permeates did not change significantly with operation time, indicating that membrane hydrophilicity/hydrophobicity was not a dominant factor affecting to MBR fouling in this study. Compared to other membranes, the fouling of PETE membrane was more influenced by pore clogging (irreversible fouling), which would probably contribute to a higher organic rejection of the PETE membrane.