• Title/Summary/Keyword: 막여과법

Search Result 91, Processing Time 0.028 seconds

Cross-flow Nanofiltration of PCB Etching Waste Solution Containing Copper Ion (구리이온을 함유한 PCB 폐에칭액의 Cross-flow 나노여과)

  • Park, Hye-Ri;Nam, Sang-Won;Youm, Kyung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.272-277
    • /
    • 2014
  • In this study the nanofiltration (NF) membrane treatment of a sulfuric acid waste solutions containing copper ion ($Cu^{+2}$) discharging from the etching processes of the printed circuit board (PCB) manufacturing industry has been studied for the recycling of acid etching solution. SelRO MPS-34 4040 NF membrane from Koch company was tested to obtain the basic NF data for recycling of etching solution and separation efficiency (total rejection) of copper ion. NF experiments were carried out with a cross-flow membrane filtration laboratory system. The permeate flux was decreased with the increasing copper ion concentration in sulfuric acid solution and lowering pH of acid solution, and its value was the range of $4.5{\sim}23L/m^2{\cdot}h$. Total rejection of copper ion was decreased with the increasing copper ion concentration, lowering pH of acid solution and decreasing cross-flow rate. The total rejection of copper ion was more than 70% at the experimental condition. The SelRO MPS-34 4040 NF membrane was represented the stable flux and rejection for 1 year operation.

Preparation of Polyethersulfone Ultrafiltration Membranes Containing $ZrO_2$ Nanoparticles by Combining Phase-inversion Method/Sol-gel Technique (상변환/졸-겔법에 의한 $ZrO_2$ 나노입자 함유 Polyethersulfone 한외여과 막의 제조)

  • Youm, Kyung-Ho;Lee, Yun-Jae
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.303-312
    • /
    • 2006
  • The asymmetric hybrid membranes of polyethersulfone (PES) and $ZrO_2$ nanoparticles were prepared via new one-step procedure combining simultaneously the phase-inversion method and the sol-gel technique. The optimum contents of $Zr(PrO)_4\;and\;HNO_3$ catalyst were determined by the adsorption experiments of phosphate anion onto the resulting hybrid membranes. The maximum adsorption of phosphate anion is obtained at the conditions of 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES and 30 mL $HNO_3$ addition per 1 mL $Zr(PrO)_4$. Variation of morphology, performance and incorporated $ZrO_2$ amount of the resulting hybrid membranes were discussed and determined using SEM, pure water flux, TGA, ICP, XRD and contact angle measurements. Increasing $Zr(PrO)_4$ addition into casting solution, pure water flux is increased and $ZrO_2$ amount in the hybrid membrane is maximized at the conditions 0.15 mL $Zr(PrO)_4$ addition per 1 mL PES. The prephosphatation of PES-$ZrO_2$ hybrid membrane was studied to modify the surface characteristics of membrane. Ultrafiltration of bovine serum albumin (BSA) solution was performed in a dead-end cell using both a bare (non-phosphated) and a phosphated hybrid membrane. It is revealed that both the permeate flux and BSA rejection were increased as about 40% by prephosphatation of hybrid membrane. These results may be explained on the basis of the increase of membrane hydrophilicity, which was determined from contact angle measurements.

Reuse of Petroleum Refinery Wastewater Using Reverse Osmosis Membrane (역삼투막을 이용한 정유산업 폐수 재활용 연구)

  • Hwang, Jong-Sic;Sang, Byoung-In;Yoo, Je-Kang;Lee, Kyu-Hyun;Min, Byoung-Ryul;Kim, Byoung-Sik
    • Membrane Journal
    • /
    • v.4 no.4
    • /
    • pp.213-220
    • /
    • 1994
  • Reverse osmosis(R/O) pilot system, which consists of pretreatments and R/O membranes, was demonstrated to regenerate the petroleum refinery wastewater for the process feedwater supply. Despite of the unsteady quality of the wastewater effluent from the process facilities, relatively high salt rejection of 96~99% was obtained and the product water showed a feasible quality for the use of cooling tower feed water. The results of R/O membrane module cleaning with NaOH solution represented that there was some fouling effects on the membrane performance during the period of test due to the ineffective treatment processes proposed and used in this study.

  • PDF

Evaluation of Membrane Damage Sensitivity by Defect Types for Improving Reliability of Membrane Integrity Monitoring (막 완결성 모니터링 신뢰성 향상을 위한 손상 유형별 막 손상 감도 평가)

  • Lee, Yong-Soo;Kang, Ha-Young;Kim, Hyung-Soo;Kim, Jong-Oh
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.248-254
    • /
    • 2017
  • In order to secure the reliability of pathogenic microorganisms such as Cryptosporidium and Giaridia, which are chlorophilic protozoans, membrane filtration systems have been widely used in water purification process. hese integrity tests are classified into direct and indirect methods. Based on the bubble point theory, the pressure-based test in the direct method is presented in the USEPA Guidance Manual with sensitivity to detect a minimum size of pathogenic microorganisms of $3{\mu}m$ or more. Indirect methods are widely used in that they are capable of continuous operation in on-line state, but there is a very low sensitivity of damage detection compared to the direct method, and there is a limit that can not specify the damage area, so it is necessary to improve this sensitivity. In this study, we compared the LRVDIT and UCL values according to the type of membrane defect, number of fiber breaks, and initial set pressure value through the Integrity Test by Pressure Decay Test (PDT).

Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (I): Evaluation of Acid Stability of Commercial Nanofiltration Membranes (나노여과에 의한 중금속 함유 산성 폐에칭액의 재생(I): 상용 나노여과 막의 산 안정성 평가)

  • Youm, Kyung-Ho;Shin, Hwa-Sup;Jin, Cheon-Deok
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • In this study the nanofiltration (NF) membrane treatment of a nitric acid waste solutions containing $Pb^{+2}$ heavy metal ion discharging from the etching processes of an electronics and semiconductors industry has been studied for the purpose of recycling of nitric acid etching solutions. Three kinds of NF membranes (General Electric Co. Duraslick NF-4040 membrane, Dow Co. Filmtec LP-4040 membrane and Koch Co. SelRO MPS-34 4040 membrane) were tested for their separation efficiency (total rejection) of $Pb^{+2}$ ion and membrane stability in nitric acid solution. NF experiments were carried out with a dead-end membrane filtration laboratory system. The membrane permeate flux was increased with the increasing storage time in nitric acid solution and lowering pH of acid solution because of the enhancing of NF membrane damage by nitric acid. The membrane stability in nitric acid solution was more superior in the order of Filmtec LP-4040 < Duraslick NF-4040 < SelRO MPS-34 4040 membrane. The total rejection of Pb+2 ion was decreased with the increasing storage time in nitric acid solution and lowering the pH of acid solution. The total rejection of $Pb^{+2}$ ion after 4 months NF treatment was decreased from 95% initial value to 20% in the case of Duraslick NF-4040 membrane, from 85% initial value to 65% in the case of SelRO MPS-34 4040 membrane and from 90% initial value to 10% in the case of Filmtec LP-4040 membrane. These results showed that SelRO MPS-34 4040 NF membrane was more suitable for the treatment of an acidic etching waste solutions containing heavy metal ions.

Characteristics of Fouling in a Submerged Membrane Bioreactor Activated Sludge Process (침지형 막분리 활성 슬러지법에 따른 막 오염 특성)

  • 김대식;강종석;김기연;이영무
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.170-178
    • /
    • 2001
  • PVC microfiltration membrane was prepared by phase immersion method and applied to membrane bioreactor (MBR) contained activated sludge. The hydrophilicity of membrane and the pore size increase with the amount of additive(PVP) ducting the preparation of membrane. Permeation characteristics and the membrane fouling behavior were investigated by varying the internal environment in MBR using the prepared membranes. When there is a sludge bulking in MBR caused by microorganism, membrane fouling was accumulated. The cake layer resistance, R$_{c}$, of membrane increased in the order of CP-0 > CP-1.0 > CP-1.5. Rc increased up to 3.5~7 fold where the sludge bulking occurred in MBR. CP-1.5 seems to be appropriated membrane on the basis of the surface characteristics and the flux. The average flux of all the test membrane was 12(${\pm}$2) L/$m^2$hr whereas the COD removal efficiency was 98.8%. The ratio of bulking sludge and the type and the size of microorganism in operating MBR accelerate the membrane fouling and flux decline. It is concluded that the characteristic of membrane filtration depends on the hydrophilicity of membrane, the internal environment of MBR reactor and the growth factor of sludge.

  • PDF

Graphene Oxide Incorporated Antifouling Thin Film Composite Membrane for Application in Desalination and Clean Energy Harvesting Processes (해수담수화와 청정 에너지 하베스팅을 위한 산화 그래핀 결합 합성 폴리머 방오 멤브레인)

  • Lee, Daewon;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.16-34
    • /
    • 2021
  • Water supplies are decreasing in comparison to increasing clean water demands. Using nanofiltration is one of the most effective and economical methods to meet the need for clean water. Common methods for desalination are reverse osmosis and nanofiltration. However, pristine membranes lack the essential features which are, stability, economic efficiency, antibacterial and antifouling performances. To enhance the properties of the pristine membranes, graphene oxide (GO) is a promising and widely researched material for thin film composites (TFC) membrane due to their characteristics that help improve the hydrophilicity and anti-fouling properties. Modification of the membrane can be done on different layers. The thin film composite membranes are composed of three different layers, the top filtering active thin polyamide (PA) layer, supporting porous layer, and supporting fabric. Forward osmosis (FO) process is yet another energy efficient desalination process, but its efficiency is affected due to biofouling. Incorporation of GO enhance antibacterial properties leading to reduction of biofilm formation on the membrane surface. Pressure retarded osmosis (PRO) is an excellent process to generate clean energy from sea water and the biofouling of membrane is reduced by introduction of GO into the active layer of the TFC membrane. Different modifications on the membranes are being researched, each modification with its own advantages and disadvantages. In this review, modifications of nanofiltration membranes and their composites, characterization, and performances are discussed.

Preparation of poly(vinyl alcohol)-coated Composite Nanofiltration Membranes on Various Support Membranes (다양한 지지체 분리막 위에 poly(vinyl alcohol)이 코팅된 나노복합막의 제조)

  • Lee Kew-Ho;Kim In-Chul
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.34-43
    • /
    • 2005
  • The poly(vinyl alcohol) (PVA)-based thin film composite nanofiltration (NF) membranes were prepared by coating polysulfone ultrafiltration membranes, sulfonated polyethersulfone and polyamide NF membranes with aqueous PVA solution by a pressurizing method. The PVA was cross-linked with aqueous glutaraldehyde solution. The NF membranes coated with a very low concentration of PVA on all the support membranes was successfully prepared. With increasing the hydrophilicity of the support membranes, the water flux increased. Especially, ζ-potential of negatively charged polyamide NF membrane was reduced by coating the membrane with PVA. A fouling experiment was carried out with positively charged surfactant, humic acid, complex of humic acid and calcium ion and bovine serum albumin. A non-coated polyamide NF membrane was significantly fouled by various foulants. The fouling process when using humic acid and protein occurred at the isoelectric point. There was severe fouling when using humic acid and adding bivalent cations. By coating the polyamide NF membrane with aqueous PVA solution, fouling was reduced. The polyamide NF membrane coated with PVA was resistant to the acidic and basic solution.

Effect of Polymeric Surfactant on the Separation of 1-Naphthylamine by Micellar Enhanced Ultrafiltration Membranes (고분자형 계면활성제가 마이셀 촉진 한외여과법에 의한 1-나프틸 아민의 제거에 미치는 영향)

  • Youngkook Choi;Soobok Lee;Minok Koo;Yutaka Ishigami;Toshio Kajiuchi
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.131-135
    • /
    • 1997
  • Polymeric micellar enhanced ultrafiltration method using a new type of polyrmer, $\alpha$-allyl-$\omega$-methoxy polyoxyethlene and maleic anhydride copolymer (AKM-0531, Mw 15, 000), has been proposed to separate 1-naphthylamine as a weak cationic toxic organic solubilizate. Enhancement effect of polymeric micelle was identified by the ultrafiltration runs using polyacryronitrile(PAN) holow fiber membrane with molecular weight cut off 6, 000. The linear dependance of flux on the pressure difference is shown to be valid up to 0.6kg/${cm}^2$ and the rate of flux increase in response to change in the pressure is gradually reduced under the pressure difference. Rejection of 0.96 was observed for f mM of 1-naphthylamine with 2 wt.% polymer solution at the conditions of 0.4kg/${cm}^2$, natural pH. and $25^{\circ}C$ Solubilization of 1-naphthylamine into the polymeric micelle enhanced the separation efficiency.

  • PDF

The Ultrastructure of the Chlorococcalean Picoplankton Isolated from the Western Channel of the Korea Strait (대한해협에서 분리한 초미세 녹조플랑크톤의 미세구조)

  • Chung, Ik-Kyo;Kang, Yoon-Hyang
    • 한국해양학회지
    • /
    • v.30 no.6
    • /
    • pp.529-536
    • /
    • 1995
  • A picophytoplankton has been isolated from the western channel of the Korea Strait. The cell was isolated by dilution method. It is about 2 ${\mu}m$ in diameter and has smooth surface. Organelles of nucleus, chloroplasts, mitochondrion, Golgi body, pyrenoids, vacuoles and lipid bodies are identified. Pigments are composed of chlorophyll a and chlorophyll b, ${\beta}$-carotene and other xanthophylls. Based on the ultrastructural features and pigment composition, it may belong to chlorococcalean picoplankton.

  • PDF