• 제목/요약/키워드: 마코브 체인 몬테칼로

검색결과 11건 처리시간 0.028초

RAYLEIGH와 ERLANG 추세를 가진 혼합 고장모형에 대한 베이지안 추론에 관한 연구 (Bayesian Inference for Mixture Failure Model of Rayleigh and Erlang Pattern)

  • 김희철;이승주
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.505-514
    • /
    • 2000
  • 마코브체인 몬테칼로방법중에서 깁스 추출방법을 혼합 고장모형에 이용하였다. 베이자안 추론에서 조건부분포를 가지고 사후 분포를 결정하는데 있어서 계산 문제와 이론적인 정당성을 고려하여 감마족인 Rayleigh와 Erlang추세를 가진 혼합모형에 대하여 깁스샘플링 알고리즘을 이용하여 베이지안 계산과 신뢰도 추이를 알아보고 모의실험자료를 이용하여 수치적인 계산을 시행하고 그 결과를 제시하였다.

  • PDF

부등 제한 조건하에서의 베이지안 추론 (Bayesian Inference with Inequality Constraints)

  • 오만숙
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.909-922
    • /
    • 2014
  • 부등제한 조건 (>,<,=)과 관련된 베이지안 추론에서 다음의 세 가지 주제에 대하여 기존의 연구와 최근의 연구동향 그리고 추후 연구주제에 대하여 살펴보았다 : ⅰ) 모수에 대한 여러 부등제한 조건들의 비교, ⅱ) 모수에 부등제한 조건을 부여하는 것이 타당하다고 할 때 모수의 동등성에 관한 동시 다중 검정, ⅲ) 순서적 범주형 변수에 대한 분할표에서 스코어 모수에 순서적 부등제한 조건을 가정 할 때 스코어 모수의 동등성에 대한 다중 검정.

카그라 마코브 체인 몬테칼로 모수 추정 파이프라인 분석 개발과 밀집 쌍성의 물리량 측정 (Development of a Markov Chain Monte Carlo parameter estimation pipeline for compact binary coalescences with KAGRA GW detector)

  • Kim, Chunglee;Jeon, Chaeyeon;Lee, Hyung Won;Kim, Jeongcho;Tagoshi, Hideyuki
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.51.3-52
    • /
    • 2020
  • We present the status of the development of a Markov Chain Monte Carlo (MCMC) parameter estimation (PE) pipeline for compact binary coalescences (CBCs) with the Japanese KAGRA gravitational-wave (GW) detector. The pipeline is included in the KAGRA Algorithm Library (KAGALI). Basic functionalities are benchmarked from the LIGO Algorithm Library (LALSuite) but the KAGRA MCMC PE pipeline will provide a simpler, memory-efficient pipeline to estimate physical parameters from gravitational waves emitted from compact binaries consisting of black holes or neutron stars. Applying inspiral-merge-ringdown and inspiral waveforms, we performed simulations of various black hole binaries, we performed the code sanity check and performance test. In this talk, we present the situation of GW observation with the Covid-19 pandemic. In addition to preliminary PE results with the KAGALI MCMC PE pipeline, we discuss how we can optimize a CBC PE pipeline toward the next observation run.

  • PDF

영과잉 토빗모형을 이용한 한국 소득분포 자료의 베이지안 분석 (Bayesian analysis of Korean income data using zero-inflated Tobit model)

  • 황지수;김세완;오만숙
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.917-929
    • /
    • 2017
  • 한국노동패널조사에서 제공하는 2015년 한국 생산가능인구의 월평균 소득분포를 보면 0 관측치의 비율이 과도하게 높은 형태를 보여 기존의 소득분포에 주로 사용되는 토빗모형으로는 설명에 한계가 있다. 본 연구에서는 영과잉 특성을 반영하여 영과잉 토빗모형을 사용하여 한국인의 소득 자료를 분석한다. 영과잉 토빗모형은 2단계 모형으로 1단계에서는 소득이 0인 그룹을 두 그룹으로 나누는데, 첫 번째 그룹은 노동시장 참여의지가 없어 시장에 참여하지 않으므로 0이 관측되는 그룹(genuine zero)이고 두 번째 그룹은 노동시장 참여의지는 있으나 낮은 임금으로 인하여 절단되어 0이 관측되는 그룹(random zero)으로 가정하였다. 두 번째 random zero 그룹은 0 이상의 연속 자료와 결합하여 토빗모형을 적용한다. 1단계와 2단계 모형에 관심 있는 설명변수를 가진 회귀모형을 적용하여 노동시장 참여여부와 임금 수준에 영향을 미치는 요인을 알아본다. 마코브 체인 몬테칼로 기법을 사용하여 모수를 추정하고 기존의 토빗모형과 비교한 결과 영과잉 토빗모형이 0의 빈도추정과 모형 적합도 면에서 우수한 결과를 보였다. 분석결과 나이가 많을수록, 남자가 여자보다, 학력이 낮을수록, 노동시장에 참여할 가능성이 매우 유의하게 높으며, 사회경제적 지위가 높을수록 그리고 유보임금이 낮을수록 노동시장에 참여하지 않을 확률이 높은 것으로 나타났다. 임금수준을 보면, 남자가 여자보다, 학력이 높을수록, 기혼이 미혼 보다 매우 유의하게 더 높은 임금을 받는 것으로 나타났다.

소프트웨어 신뢰모형에 대한 베이지안 접근 (Bayesian Approach for Software Reliability Models)

  • 최기헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.119-133
    • /
    • 1999
  • 마코브체인 몬테칼로 방법을 소프트웨어 신뢰모형에 이용하였다. 베이지안 추론에서 조건부 분포를 가지고 사후분포를 결정하는데 있어서의 계산 문제를 고찰하였다. 특히 레코드값을 통계량을 갖고서 혼합과정과 중첩과정에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하여 베이지안 계산과 모형 선택을 제시하고 모의실험자료를 이용하여 수치적 인 계산을 시행하고 그 결과를 비교하였다.

  • PDF

계층적 베이즈 모형을 이용한 대학등록금에 대한 부모님의 경제적 지원 영향 분석 (Effects of Financial College Tuition Support by Korean Parents using a Hierarchical Bayes Model)

  • 오만숙;오현숙;오민정
    • 응용통계연구
    • /
    • 제26권2호
    • /
    • pp.267-280
    • /
    • 2013
  • 최근 한국 사회에서 경제적, 정치적, 사회적 이슈가 되고 있는 대학 등록금의 경제적 부담에 영향을 미치는 요인들에 대한 분석을 위하여 통계청에서 실시한 '2010년도 사회조사'에서 수집된 자료를 기반으로 지역을 계층으로 하는 베이지안 계층모형을 이용한 분석을 수행하였다. 등록금의 70% 이상을 부모님이 지원하는가에 대한 이항 반응변수에 대하여 계층적 프로빗 모형을 설정한 후 설명변수들에 대한 요인분석을 실시하여 설명변수를 압축하고 마코브체인 몬테칼로 기법을 적용하여 모수를 추정하였다. 자료의 분석 결과, 많은 지역에서 소득과 정신적 스트레스 요인이 부모님의 등록금에 대한 경제적 지원과 유의한 관련이 있음을 보여주었다. 소득이 높은 부모일수록 자녀의 대학 등록금을 지원하며 부모로부터 경제적 지원을 받는 학생일수록 정신적 스트레스를 덜 받는 것으로 나타나 부모의 소득이 자녀의 정신건강에 유의한 영향을 미침을 보여 주었다. 반면에, 성별, 생활건강, 학교 만족도는 대부분의 지역에서 부모님의 등록금 지원과 유의한 관련이 없었다. 스트레스 또는 소득과 부모님의 지원에 대한 지역별 차이를 보면, 강원도 지역 학생들이 부모님의 지원이 낮을 경우 가장 정신적 스트레스를 많이 받는 것으로 나타났으며 소득이 많을수록 부모님의 지원 가능성이 높아지는 경향은 지방 행정도에 비하여 대도시에서 더 뚜렷하게 나타남을 알 수 있었다.

잠재변수를 이용한 NHPP 베이지안 소프트웨어 신뢰성 모형에 관한 연구 (The NHPP Bayesian Software Reliability Model Using Latent Variables)

  • 김희철;신현철
    • 융합보안논문지
    • /
    • 제6권3호
    • /
    • pp.117-126
    • /
    • 2006
  • 본 논문은 소프트웨어 신뢰성장 모형에 대한 베이지안 모수추론과 모형선택 방법이 연구되었다. 소프트웨어 성장 모형은 내재되어 있는 오류와 고장 간격시간으로 모형화하면 소프트웨어 개발 단계에서 유용하게 사용할 수 있다. 본 논문에서는 사후 분포의 정보를 얻기 위한 다중 적분문제에 있어서 일종의 마코브 체인 몬테칼로 방법인 깁스 샘플링을 사용하여 사후 분포의 계산이 이루어졌다. 확산 사전 분포를 가진 소프트웨어 신뢰성에 의존된 일반적 순서 통계량 모형에 대하여 베이지안 모수 추정이 이루어 졌고 효율적인 모형의 선택방법도 시행되었다. 모형 설정과 선택 판단기준은 편차 자승합을 이용한 적합도 검정과 추세 검정이 사용되었다. 본 논문에서 사용된 소프트웨어 고장 자료는 Minitab(version 14) 통계 페키지에 있는 와이블분포(형상모수가 2이고 척도모수가 5)에서 발생시킨 30개의 난수를 이용한 모의 실험자료를 이용하여 고장자료 분석을 시행하였다.

  • PDF

제한조건이 있는 선형회귀 모형에서의 베이지안 변수선택 (Bayesian Variable Selection in Linear Regression Models with Inequality Constraints on the Coefficients)

  • 오만숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.73-84
    • /
    • 2002
  • 계수에 대한 부등 제한조건이 있는 선형 회귀모형은 경제모형에서 가장 흔하게 다루어지는 것 중의 하나이다. 이는 특정 설명변수에 대한 계수의 부호를 음양 중 하나로 제한하거나 계수들에 대하여 순서적 관계를 주기 때문이다. 본 논문에서는 이러한 부등 제한이 있는 선형회귀 모형에서 유의한 설명변수의 선택을 해결하는 베이지안 기법을 고려한다. 베이지안 변수선택은 가능한 모든 모형의 사후확률 계산이 요구되는데 본 논문에서는 이러한 사후확률들을 동시에 계산하는 방법을 제시한다. 구체적으로 가장 일반적인 모형의 모수에 대한 사후표본을 깁스 표본기법을 적용시켜 얻은 후 이를 이용하여 모든 가능한 모형의 사후확률을 계산하고 실제적인 자료에 본 논문에서 제안된 방법을 적용시켜 본다.

포아송 실행시간 모형에 의존한 소프트웨어 최적방출시기에 대한 베이지안 접근 방법에 대한 연구 (The Bayesian Approach of Software Optimal Release Time Based on Log Poisson Execution Time Model)

  • 김희철;신현철
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권7호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 거친 후 사용자에게 인도하는 시기를 결정하는 방출문제에 대하여 연구하였다. 따라서 최적 소프트웨어 방출 정책은 소프트웨어 요구 신뢰도를 만족시키고 소프트웨어 개발 및 유지 총비용을 최소화 시키는 정책을 수용해야 한다. 본 논문에서는 로그포아송 실행시간모형에 대하여 베이지안 모수 추정법(마코브체인 몬테칼로(MCMC) 기법 중에 하나인 깁스 샘플링과 메트로폴리스 알고리즘을 이용한 근사기법)이 사용되었다. 본 논문의 수치적인 예에서는 Musa의 T1 자료를 적용하여 최우수추정법과 베이지안 모수 추정과의 관계를 빅교하고 또한 최적 방출시기를 추정하였다.

베이지안 분위회귀모형을 이용한 지역인구에 영향을 미치는 요인분석 (Factors affecting regional population of Korea using Bayesian quantile regression)

  • 김민영;오만숙
    • 응용통계연구
    • /
    • 제34권5호
    • /
    • pp.823-835
    • /
    • 2021
  • 지역별 인구의 분포에 영향을 미치는 요인의 파악은 국가의 사회, 경제, 문화적 발전 위한 정부의 인구정책 수립에 매우 중요하다. 본 연구에서는 2019년 인구주택 총조사 자료를 기반으로 대한민국 국토를 서울, 대도시, 기타지역의 세 지역으로 나누어 각 지역에서 소지역의 인구 크기에 영향을 미치는 요인들을 살펴 보았다. 인구 자료의 특징은 매우 비대칭적이며 이분산성을 가지므로 조건부 평균에 초점을 맞추는 일반적인 회귀모형 대신 분포에 대한 가정이 필요하지 않은 분위회귀모형을 사용하여 인구의 크기에 따라 변화하는 각 요인의 세부적인 영향을 살펴보았다. 분석결과 서울, 대도시, 기타지역에 따라 그리고 같은 지역 내에서도 세부 지역의 인구크기에 따라 요인의 영향이 매우 달라짐을 확인하였다. 이 결과들은 인구관련 변수들이 지역 마다 매우 이질적인 성질을 가지고 있으며 따라서 획일적인 인구정책이 아닌 지역 특성에 맞는 맞춤형 인구정책을 수립해야 할 필요성을 시사한다.