마코브체인 몬테칼로방법중에서 깁스 추출방법을 혼합 고장모형에 이용하였다. 베이자안 추론에서 조건부분포를 가지고 사후 분포를 결정하는데 있어서 계산 문제와 이론적인 정당성을 고려하여 감마족인 Rayleigh와 Erlang추세를 가진 혼합모형에 대하여 깁스샘플링 알고리즘을 이용하여 베이지안 계산과 신뢰도 추이를 알아보고 모의실험자료를 이용하여 수치적인 계산을 시행하고 그 결과를 제시하였다.
부등제한 조건 (>,<,=)과 관련된 베이지안 추론에서 다음의 세 가지 주제에 대하여 기존의 연구와 최근의 연구동향 그리고 추후 연구주제에 대하여 살펴보았다 : ⅰ) 모수에 대한 여러 부등제한 조건들의 비교, ⅱ) 모수에 부등제한 조건을 부여하는 것이 타당하다고 할 때 모수의 동등성에 관한 동시 다중 검정, ⅲ) 순서적 범주형 변수에 대한 분할표에서 스코어 모수에 순서적 부등제한 조건을 가정 할 때 스코어 모수의 동등성에 대한 다중 검정.
Kim, Chunglee;Jeon, Chaeyeon;Lee, Hyung Won;Kim, Jeongcho;Tagoshi, Hideyuki
천문학회보
/
제45권1호
/
pp.51.3-52
/
2020
We present the status of the development of a Markov Chain Monte Carlo (MCMC) parameter estimation (PE) pipeline for compact binary coalescences (CBCs) with the Japanese KAGRA gravitational-wave (GW) detector. The pipeline is included in the KAGRA Algorithm Library (KAGALI). Basic functionalities are benchmarked from the LIGO Algorithm Library (LALSuite) but the KAGRA MCMC PE pipeline will provide a simpler, memory-efficient pipeline to estimate physical parameters from gravitational waves emitted from compact binaries consisting of black holes or neutron stars. Applying inspiral-merge-ringdown and inspiral waveforms, we performed simulations of various black hole binaries, we performed the code sanity check and performance test. In this talk, we present the situation of GW observation with the Covid-19 pandemic. In addition to preliminary PE results with the KAGALI MCMC PE pipeline, we discuss how we can optimize a CBC PE pipeline toward the next observation run.
한국노동패널조사에서 제공하는 2015년 한국 생산가능인구의 월평균 소득분포를 보면 0 관측치의 비율이 과도하게 높은 형태를 보여 기존의 소득분포에 주로 사용되는 토빗모형으로는 설명에 한계가 있다. 본 연구에서는 영과잉 특성을 반영하여 영과잉 토빗모형을 사용하여 한국인의 소득 자료를 분석한다. 영과잉 토빗모형은 2단계 모형으로 1단계에서는 소득이 0인 그룹을 두 그룹으로 나누는데, 첫 번째 그룹은 노동시장 참여의지가 없어 시장에 참여하지 않으므로 0이 관측되는 그룹(genuine zero)이고 두 번째 그룹은 노동시장 참여의지는 있으나 낮은 임금으로 인하여 절단되어 0이 관측되는 그룹(random zero)으로 가정하였다. 두 번째 random zero 그룹은 0 이상의 연속 자료와 결합하여 토빗모형을 적용한다. 1단계와 2단계 모형에 관심 있는 설명변수를 가진 회귀모형을 적용하여 노동시장 참여여부와 임금 수준에 영향을 미치는 요인을 알아본다. 마코브 체인 몬테칼로 기법을 사용하여 모수를 추정하고 기존의 토빗모형과 비교한 결과 영과잉 토빗모형이 0의 빈도추정과 모형 적합도 면에서 우수한 결과를 보였다. 분석결과 나이가 많을수록, 남자가 여자보다, 학력이 낮을수록, 노동시장에 참여할 가능성이 매우 유의하게 높으며, 사회경제적 지위가 높을수록 그리고 유보임금이 낮을수록 노동시장에 참여하지 않을 확률이 높은 것으로 나타났다. 임금수준을 보면, 남자가 여자보다, 학력이 높을수록, 기혼이 미혼 보다 매우 유의하게 더 높은 임금을 받는 것으로 나타났다.
Journal of the Korean Data and Information Science Society
/
제10권1호
/
pp.119-133
/
1999
마코브체인 몬테칼로 방법을 소프트웨어 신뢰모형에 이용하였다. 베이지안 추론에서 조건부 분포를 가지고 사후분포를 결정하는데 있어서의 계산 문제를 고찰하였다. 특히 레코드값을 통계량을 갖고서 혼합과정과 중첩과정에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하여 베이지안 계산과 모형 선택을 제시하고 모의실험자료를 이용하여 수치적 인 계산을 시행하고 그 결과를 비교하였다.
최근 한국 사회에서 경제적, 정치적, 사회적 이슈가 되고 있는 대학 등록금의 경제적 부담에 영향을 미치는 요인들에 대한 분석을 위하여 통계청에서 실시한 '2010년도 사회조사'에서 수집된 자료를 기반으로 지역을 계층으로 하는 베이지안 계층모형을 이용한 분석을 수행하였다. 등록금의 70% 이상을 부모님이 지원하는가에 대한 이항 반응변수에 대하여 계층적 프로빗 모형을 설정한 후 설명변수들에 대한 요인분석을 실시하여 설명변수를 압축하고 마코브체인 몬테칼로 기법을 적용하여 모수를 추정하였다. 자료의 분석 결과, 많은 지역에서 소득과 정신적 스트레스 요인이 부모님의 등록금에 대한 경제적 지원과 유의한 관련이 있음을 보여주었다. 소득이 높은 부모일수록 자녀의 대학 등록금을 지원하며 부모로부터 경제적 지원을 받는 학생일수록 정신적 스트레스를 덜 받는 것으로 나타나 부모의 소득이 자녀의 정신건강에 유의한 영향을 미침을 보여 주었다. 반면에, 성별, 생활건강, 학교 만족도는 대부분의 지역에서 부모님의 등록금 지원과 유의한 관련이 없었다. 스트레스 또는 소득과 부모님의 지원에 대한 지역별 차이를 보면, 강원도 지역 학생들이 부모님의 지원이 낮을 경우 가장 정신적 스트레스를 많이 받는 것으로 나타났으며 소득이 많을수록 부모님의 지원 가능성이 높아지는 경향은 지방 행정도에 비하여 대도시에서 더 뚜렷하게 나타남을 알 수 있었다.
본 논문은 소프트웨어 신뢰성장 모형에 대한 베이지안 모수추론과 모형선택 방법이 연구되었다. 소프트웨어 성장 모형은 내재되어 있는 오류와 고장 간격시간으로 모형화하면 소프트웨어 개발 단계에서 유용하게 사용할 수 있다. 본 논문에서는 사후 분포의 정보를 얻기 위한 다중 적분문제에 있어서 일종의 마코브 체인 몬테칼로 방법인 깁스 샘플링을 사용하여 사후 분포의 계산이 이루어졌다. 확산 사전 분포를 가진 소프트웨어 신뢰성에 의존된 일반적 순서 통계량 모형에 대하여 베이지안 모수 추정이 이루어 졌고 효율적인 모형의 선택방법도 시행되었다. 모형 설정과 선택 판단기준은 편차 자승합을 이용한 적합도 검정과 추세 검정이 사용되었다. 본 논문에서 사용된 소프트웨어 고장 자료는 Minitab(version 14) 통계 페키지에 있는 와이블분포(형상모수가 2이고 척도모수가 5)에서 발생시킨 30개의 난수를 이용한 모의 실험자료를 이용하여 고장자료 분석을 시행하였다.
계수에 대한 부등 제한조건이 있는 선형 회귀모형은 경제모형에서 가장 흔하게 다루어지는 것 중의 하나이다. 이는 특정 설명변수에 대한 계수의 부호를 음양 중 하나로 제한하거나 계수들에 대하여 순서적 관계를 주기 때문이다. 본 논문에서는 이러한 부등 제한이 있는 선형회귀 모형에서 유의한 설명변수의 선택을 해결하는 베이지안 기법을 고려한다. 베이지안 변수선택은 가능한 모든 모형의 사후확률 계산이 요구되는데 본 논문에서는 이러한 사후확률들을 동시에 계산하는 방법을 제시한다. 구체적으로 가장 일반적인 모형의 모수에 대한 사후표본을 깁스 표본기법을 적용시켜 얻은 후 이를 이용하여 모든 가능한 모형의 사후확률을 계산하고 실제적인 자료에 본 논문에서 제안된 방법을 적용시켜 본다.
본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 거친 후 사용자에게 인도하는 시기를 결정하는 방출문제에 대하여 연구하였다. 따라서 최적 소프트웨어 방출 정책은 소프트웨어 요구 신뢰도를 만족시키고 소프트웨어 개발 및 유지 총비용을 최소화 시키는 정책을 수용해야 한다. 본 논문에서는 로그포아송 실행시간모형에 대하여 베이지안 모수 추정법(마코브체인 몬테칼로(MCMC) 기법 중에 하나인 깁스 샘플링과 메트로폴리스 알고리즘을 이용한 근사기법)이 사용되었다. 본 논문의 수치적인 예에서는 Musa의 T1 자료를 적용하여 최우수추정법과 베이지안 모수 추정과의 관계를 빅교하고 또한 최적 방출시기를 추정하였다.
지역별 인구의 분포에 영향을 미치는 요인의 파악은 국가의 사회, 경제, 문화적 발전 위한 정부의 인구정책 수립에 매우 중요하다. 본 연구에서는 2019년 인구주택 총조사 자료를 기반으로 대한민국 국토를 서울, 대도시, 기타지역의 세 지역으로 나누어 각 지역에서 소지역의 인구 크기에 영향을 미치는 요인들을 살펴 보았다. 인구 자료의 특징은 매우 비대칭적이며 이분산성을 가지므로 조건부 평균에 초점을 맞추는 일반적인 회귀모형 대신 분포에 대한 가정이 필요하지 않은 분위회귀모형을 사용하여 인구의 크기에 따라 변화하는 각 요인의 세부적인 영향을 살펴보았다. 분석결과 서울, 대도시, 기타지역에 따라 그리고 같은 지역 내에서도 세부 지역의 인구크기에 따라 요인의 영향이 매우 달라짐을 확인하였다. 이 결과들은 인구관련 변수들이 지역 마다 매우 이질적인 성질을 가지고 있으며 따라서 획일적인 인구정책이 아닌 지역 특성에 맞는 맞춤형 인구정책을 수립해야 할 필요성을 시사한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.