• Title/Summary/Keyword: 마케팅 활동

Search Result 789, Processing Time 0.027 seconds

Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products (자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로)

  • Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2014
  • Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.

A Study on the Effect of Corporate Social Responsibility on Organizational Commitment, Organizational Trust, Organizational Citizenship Behavior: Focusing on Incorporation Companies in Business Incubator (기업의 사회적 책임이 조직몰입, 조직신뢰, 조직시민행동에 미치는 영향에 관한 연구: 창업보육센터 입주기업을 중심으로)

  • Lee, In Seong;Kang, In Won
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.2
    • /
    • pp.235-247
    • /
    • 2019
  • In order to achieve the results that are appropriate for the purpose of the enterprise, it is important to comprehensively understand the behaviors within the roles of the members of the organization and actions outside the roles. However, there have been relatively few studies on corporate social responsibility (CSR) among the existing studies that have been conducted to date. In particular, organizational citizenship behavior, a voluntary commitment by organizational members, is perceived as a very effective way of enhancing corporate performance, but studies on organizational citizenship behavior based on corporate social responsibility have rarely been conducted. In recent years, domestic companies have recognized social responsibility as an activity rather than an additional activity. Therefore, it is very meaningful to look at the organizational performance by examining the factors that make up this social responsibility from the perspective of the company. It is considered a task. In order to demonstrate this, this study collected 303 data from a business incubator center operated by universities and public institutions nationwide and used a total of 303 samples. As a result of the verification, the wages received by the members of the organization did not affect the organizational commitment, and the working hours and the working environment affected the organizational commitment. In addition, corporate social responsibility has an effect on organizational trust in the marketing side. Organizational commitment and organizational trust were studied to positively affect organizational citizenship behavior. In addition, this study divides the degree of perception of social responsibility of the organizational members into the high recognition group and the low recognition group and analyzed whether there is a difference in the level of organizational citizenship behavior according to the employment type (regular and irregular workers) The results of this study are as follows.

Learning Performance of Real-Time Online Classes Using PBL for Clothing and Textiles Majors in College (PBL(문제중심학습)을 이용한 대학 의류학 전공 실시간 온라인 수업의 학습효과)

  • Kim, Tae-Youn
    • Journal of Korean Home Economics Education Association
    • /
    • v.34 no.4
    • /
    • pp.143-161
    • /
    • 2022
  • The aim of this study is to identify the learning performance of online classes using problem-based learning(PBL) for clothing and textiles majors in college with the increased use of online learning tools after the COVID-19 pandemic. In order to achieve this goal, the PBL was developed and applied to the 'Fashion Marketing and Merchandising' class conducted in real-time online at University in North Chungcheong Province, Korea for four weeks. After a four-week PBL class, a survey was conducted on 35 students in the 'Fashion Marketing and Merchandising' class and the 35 completed questionnaires were used for analysis. The measurement tools of this study were self-directed learning, cooperative learning ability, problem-solving ability, and learning achievement regarded as an important learning effect in PBL class. In addition, students' self-reflective essays were also analyzed to examine the educational effect of PBL applying online classes. As a result of this study, bivariate correlations among the four variables, students' self-directed learning, cooperative learning ability, problem-solving ability, and learning achievement were significantly positive. Furthermore, the results of multiple regression analysis showed that the three independent variables had significant effects on students' perceived learning achievement, in the order of cooperative learning ability, self-directed learning, and problem-solving ability. The students' self-reflective essays indicated that problem-based learning worksheet was helpful for identifying problems, and clarifying what they already and what they need to study more. Based on this study, it could be recommended that online class applying PBL could contribute to the improvement of student's learning performance.

A Case Study of Successful Strategy for Farm's Franchise Commercialization through Local Agricultural Products - Focusing on the case of Jung Donuts Co. Ltd., in Yeongju, Gyeongbuk - (지역농산물을 이용한 농촌프랜차이즈 사업화 성공 사례연구 - 경북 영주시 (주)정도너츠 사례를 중심으로 -)

  • Seo, Min-gyo;Hwang, Bo-Jun;Song, Ji-Hyeon
    • The Korean Journal of Franchise Management
    • /
    • v.4 no.1
    • /
    • pp.1-24
    • /
    • 2013
  • The purpose of this work is to analyze the case that Yeongju Municipality Government of Gyeongbuk and Jung Donuts Co., Ltd., a franchise company, activated local economy through Farm's Franchise Commercialization (FCC) and to establish the concept of FCC. As a food service franchise company, Jung Donuts specializes in making and selling glutinous rice donuts. In cooperation with Commodity Dept. of Yeongju Municipality Government, the company cultivates raw materials under contract. Such farm's franchise business has the following advantages: First, it is meaningful in the point that it contributes to opening a new market of local agricultural products in a stable way. In short, by using most agricultural products of Yeongju as raw materials, the business serves as a stable market for farmers. Secondly, it is possible to set a reasonable price through stable supply of raw materials. It is to advantages of both producers and consumers. Thirdly, the business brings about the effect of employment rise. It can cause increases in employment of franchise head office and its agencies, and of the Commodity Dept.. Lastly, it produces the promotion effect of local special products. By expanding its agencies across the country, a franchise business can promote the items of raw materials in terms of marketing. The successful FCC needs to meet three requirements as follows. The first one is to establish systematic logistic system. Stable logistic system is required in order to directly distribute and deliver products to nationwide agencies by a producing place. The second one is constant R&D activity. Through the activity of R&D of raw materials and equipment, they should be used most effectively. The third one is to build mutual trust relationship. For long-term business achievements, it is required to establish mutual trust relationship in which relevant entities share their visions with each other and cooperate with each other.

Analysis of Perceptions of Student Start-up Policies in Science and Technology Colleges: Focusing on the KAIST case (과기특성화대학 학생창업정책에 대한 인식분석: KAIST 사례를 중심으로)

  • Tae-Uk Ahn;Chun-Ryol Ryu;Minjung Baek
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.197-214
    • /
    • 2024
  • This study aimed to investigate students' perceptions at science and technology specialized universities towards entrepreneurship support policies and to derive policy improvement measures by applying a bottom-up approach to reflect the requirements of the policy beneficiaries, i.e., the students. Specifically, the research explored effective execution strategies for student entrepreneurship support policies through a survey and analysis of KAIST students. The findings revealed that KAIST students recognize the urgent need for improvement in sharing policy objectives with the student entrepreneurship field, reflecting the opinions of the campus entrepreneurship scene in policy formulation, and constructing an entrepreneurship-friendly academic system for nurturing student entrepreneurs. Additionally, there was a highlighted need for enhancement in the capacity of implementing agencies, as well as in marketing and market development capabilities, and organizational management and practical skills as entrepreneurs within the educational curriculum. Consequently, this study proposes the following improvement measures: First, it calls for enhanced transparency and accessibility of entrepreneurship support policies, ensuring students clearly understand policy objectives and can easily access information. Second, it advocates for student-centered policy development, where students' opinions are actively incorporated to devise customized policies that consider their needs and the actual entrepreneurship environment. Third, there is a demand for improving entrepreneurship-friendly academic systems, encouraging more active participation in entrepreneurship activities by adopting or refining academic policies that recognize entrepreneurship activities as credits or expand entrepreneurship-related courses. Based on these results, it is expected that this research will provide valuable foundational data to actively support student entrepreneurship in science and technology specialized universities, foster an entrepreneurial spirit, and contribute to the creation of an innovation-driven entrepreneurship ecosystem that contributes to technological innovation and social value creation.

  • PDF

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.

Case Analysis of the Promotion Methodologies in the Smart Exhibition Environment (스마트 전시 환경에서 프로모션 적용 사례 및 분석)

  • Moon, Hyun Sil;Kim, Nam Hee;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.171-183
    • /
    • 2012
  • In the development of technologies, the exhibition industry has received much attention from governments and companies as an important way of marketing activities. Also, the exhibitors have considered the exhibition as new channels of marketing activities. However, the growing size of exhibitions for net square feet and the number of visitors naturally creates the competitive environment for them. Therefore, to make use of the effective marketing tools in these environments, they have planned and implemented many promotion technics. Especially, through smart environment which makes them provide real-time information for visitors, they can implement various kinds of promotion. However, promotions ignoring visitors' various needs and preferences can lose the original purposes and functions of them. That is, as indiscriminate promotions make visitors feel like spam, they can't achieve their purposes. Therefore, they need an approach using STP strategy which segments visitors through right evidences (Segmentation), selects the target visitors (Targeting), and give proper services to them (Positioning). For using STP Strategy in the smart exhibition environment, we consider these characteristics of it. First, an exhibition is defined as market events of a specific duration, which are held at intervals. According to this, exhibitors who plan some promotions should different events and promotions in each exhibition. Therefore, when they adopt traditional STP strategies, a system can provide services using insufficient information and of existing visitors, and should guarantee the performance of it. Second, to segment automatically, cluster analysis which is generally used as data mining technology can be adopted. In the smart exhibition environment, information of visitors can be acquired in real-time. At the same time, services using this information should be also provided in real-time. However, many clustering algorithms have scalability problem which they hardly work on a large database and require for domain knowledge to determine input parameters. Therefore, through selecting a suitable methodology and fitting, it should provide real-time services. Finally, it is needed to make use of data in the smart exhibition environment. As there are useful data such as booth visit records and participation records for events, the STP strategy for the smart exhibition is based on not only demographical segmentation but also behavioral segmentation. Therefore, in this study, we analyze a case of the promotion methodology which exhibitors can provide a differentiated service to segmented visitors in the smart exhibition environment. First, considering characteristics of the smart exhibition environment, we draw evidences of segmentation and fit the clustering methodology for providing real-time services. There are many studies for classify visitors, but we adopt a segmentation methodology based on visitors' behavioral traits. Through the direct observation, Veron and Levasseur classify visitors into four groups to liken visitors' traits to animals (Butterfly, fish, grasshopper, and ant). Especially, because variables of their classification like the number of visits and the average time of a visit can estimate in the smart exhibition environment, it can provide theoretical and practical background for our system. Next, we construct a pilot system which automatically selects suitable visitors along the objectives of promotions and instantly provide promotion messages to them. That is, based on the segmentation of our methodology, our system automatically selects suitable visitors along the characteristics of promotions. We adopt this system to real exhibition environment, and analyze data from results of adaptation. As a result, as we classify visitors into four types through their behavioral pattern in the exhibition, we provide some insights for researchers who build the smart exhibition environment and can gain promotion strategies fitting each cluster. First, visitors of ANT type show high response rate for promotion messages except experience promotion. So they are fascinated by actual profits in exhibition area, and dislike promotions requiring a long time. Contrastively, visitors of GRASSHOPPER type show high response rate only for experience promotion. Second, visitors of FISH type appear favors to coupon and contents promotions. That is, although they don't look in detail, they prefer to obtain further information such as brochure. Especially, exhibitors that want to give much information for limited time should give attention to visitors of this type. Consequently, these promotion strategies are expected to give exhibitors some insights when they plan and organize their activities, and grow the performance of them.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

The Advancement of Underwriting Skill by Selective Risk Acceptance (보험Risk 세분화를 통한 언더라이팅 기법 선진화 방안)

  • Lee, Chan-Hee
    • The Journal of the Korean life insurance medical association
    • /
    • v.24
    • /
    • pp.49-78
    • /
    • 2005
  • Ⅰ. 연구(硏究) 배경(背景) 및 목적(目的) o 우리나라 보험시장의 세대가입율은 86%로 보험시장 성숙기에 진입하였으며 기존의 전통적인 전업채널에서 방카슈랑스의 도입, 온라인전문보험사의 출현, TM 영업의 성장세 等멀티채널로 진행되고 있음 o LTC(장기간병), CI(치명적질환), 실손의료보험 등(等)선 진형 건강상품의 잇따른 출시로 보험리스크 관리측면에서 언더라이팅의 대비가 절실한 시점임 o 상품과 마케팅 等언더라이팅 측면에서 매우 밀접한 영역의 변화에 발맞추어 언더라이팅의 인수기법의 선진화가 시급히 요구되는 상황하에서 위험을 적절히 분류하고 평가하는 선진적 언더라이팅 기법 구축이 필수 적임 o 궁극적으로 고객의 다양한 보장니드 충족과 상품, 마케팅, 언더라이팅의 경쟁력 강화를 통한 보험사의 종합이익 극대화에 기여할 수 있는 방안을 모색하고자 함 Ⅱ. 선진보험시장(先進保險市場)Risk 세분화사례(細分化事例) 1. 환경적위험(環境的危險)에 따른 보험료(保險料) 차등(差等) (1) 위험직업 보험료 할증 o 미국, 유럽등(等) 대부분의 선진시장에서는 가입당시 피보험자의 직업위험도에 따라 보험료를 차등 적용중(中)임 o 가입하는 보장급부에 따라 직업 분류방법 및 할증방식도 상이하며 일반사망과 재해사망,납입면제, DI에 대해서 별도의 방법을 사용함 o 할증적용은 표준위험율의 일정배수를 적용하여 할증 보험료를 산출하거나, 가입금액당 일정한 추가보험료를 적용하고 있음 - 광부의 경우 재해사망 가입시 표준위험율의 300% 적용하며, 일반사망 가입시 $1,000당 $2.95 할증보험료 부가 (2) 위험취미 보험료 할증 o 취미와 관련 사고의 지속적 다발로 취미활동도 위험요소로 인식되어 보험료를 차등 적용중(中)임 o 할증보험료는 보험가입금액당 일정비율로 부가(가입 금액과 무관)하며, 신종레포츠 등(等)일부 위험취미는 통계의 부족으로 언더라이터가 할증율 결정하여 적용함 - 패러글라이딩 년(年)$26{\sim}50$회(回) 취미생활의 경우 가입금액 $1,000당 재해사망 $2, DI보험 8$ 할증보험료 부가 o 보험료 할증과는 별도로 위험취미에 대한 부담보를 적용함. 위험취미 활동으로 인한 보험사고 발생시 사망을 포함한 모든 급부에 대한 보장을 부(不)담보로 인수함. (3) 위험지역 거주/ 여행 보험료 할증 o 피보험자가 거주하고 있는 특정국가의 임시 혹은 영구적 거주시 기후위험, 거주지역의 위생과 의료수준, 여행위험, 전쟁과 폭동위험 등(等)을 고려하여 평가 o 일반사망, 재해사망 등(等)보장급부별로 할증보험료 부가 또는 거절 o 할증보험료는 보험全기간에 대해 동일하게 적용 - 러시아의 경우 가입금액 $1,000당 일반사망은 2$의 할증보험료 부가, 재해사망은 거절 (4) 기타 위험도에 대한 보험료 차등 o 비행관련 위험은 세가지로 분류(항공운송기, 개인비행, 군사비행), 청약서, 추가질문서, 진단서, 비행이력 정보를 바탕으로 할증보험료를 부가함 - 농약살포비행기조종사의 경우 가입금액 $1,000당 일반사망 6$의 할증보험료 부가, 재해사망은 거절 o 미국, 일본등(等)서는 교통사고나 교통위반 관련 기록을 활용하여 무(無)사고운전자에 대해 보험료 할인(우량체 위험요소로 활용) 2. 신체적위험도(身體的危險度)에 따른 보험료차등(保險料差等) (1) 표준미달체 보험료 할증 1) 총위험지수 500(초과위험지수 400)까지 인수 o 300이하는 25점단위, 300점 초과는 50점 단위로 13단계로 구분하여 할증보험료를 적용중(中)임 2) 삭감법과 할증법을 동시 적용 o 보험금 삭감부분만큼 할증보험료가 감소하는 효과가 있어 청약자에게 선택의 기회를 제공할수 있으며 고(高)위험 피보험자에게 유용함 3) 특정암에 대한 기왕력자에 대해 단기(Temporary)할증 적용 o 질병성향에 따라 가입후 $1{\sim}5$년간 할증보험료를 부가하고 보험료 할증 기간이 경과한 후에는 표준체보험료를 부가함 4) 할증보험료 반환옵션(Return of the extra premium)의 적용 o 보험계약이 유지중(中)이며, 일정기간 생존시 할증보험료가 반환됨 (2) 표준미달체 급부증액(Enhanced annuity) o 영국에서는 표준미달체를 대상으로 연금급부를 증가시킨 증액형 연금(Enhanced annuity) 상품을 개발 판매중(中)임 o 흡연, 직업, 병력 등(等)다양한 신체적, 환경적 위험도에 따라 표준체에 비해 증액연금을 차등 지급함 (3) 우량 피보험체 가격 세분화 o 미국시장에서는 $8{\sim}14$개 의적, 비(非)의적 위험요소에 대한 평가기준에 따라 표준체를 최대 8개 Class로 분류하여 할인보험료를 차등 적용 - 기왕력, 혈압, 가족력, 흡연, BMI, 콜레스테롤, 운전, 위험취미, 거주지, 비행력, 음주/마약 등(等) o 할인율은 회사, Class, 가입기준에 따라 상이(최대75%)하며, 가입연령은 최저 $16{\sim}20$세, 최대 $65{\sim}75$세, 최저보험금액은 10만달러(HIV검사가 필요한 최저 금액) o 일본시장에서는 $3{\sim}4$개 위험요소에 따라 $3{\sim}4$개 Class로 분류 우량체 할인중(中)임 o 유럽시장에서는 영국 등(等)일부시장에서만 비(非)흡연할인 또는 우량체할인 적용 Ⅲ. 국내보험시장(國內保險市場) 현황(現況)및 문제점(問題點) 1. 환경적위험도(環境的危險度)에 따른 가입한도제한(加入限度制限) (1) 위험직업 보험가입 제한 o 업계공동의 직업별 표준위험등급에 따라 각 보험사 자체적으로 위험등급별 가입한도를 설정 운영중(中)임. 비(非)위험직과의 형평성, 고(高)위험직업 보장 한계, 수익구조 불안정화 등(等)문제점을 내포하고 있음 - 광부의 경우 위험1급 적용으로 사망 최대 1억(億), 입원 1일(日) 2만원까지 제한 o 금융감독원이 2002년(年)7월(月)위험등급별 위험지수를 참조 위험율로 인가하였으나, 비위험직은 70%, 위험직은 200% 수준으로 산정되어 현실적 적용이 어려움 (2) 위험취미 보험가입 제한 o 해당취미의 직업종사자에 준(準)하여 직업위험등급을 적용하여 가입 한도를 제한하고 있음. 추가질문서를 활용하여 자격증 유무, 동호회 가입등(等)에 대한 세부정보를 입수하지 않음 - 패러글라이딩의 경우 위험2급을 적용, 사망보장 최대 2 억(億)까지 제한 (3) 거주지역/ 해외여행 보험가입 제한 o 각(各)보험사별로 지역적 특성상 사고재해 다발 지역에 대해 보험가입을 제한하고 있음 - 강원, 충청 일부지역 상해보험 가입불가 - 전북, 태백 일부지역 입원급여금 1일(日)2만원이내 o 해외여행을 포함한 해외체류에 대해서는 일정한 가입 요건을 정하여 운영중(中)이며, 가입한도 설정 보험가입을 제한하거나 재해집중보장 상품에 대해 거절함 - 러시아의 경우 단기체류는 위험1급 및 상해보험 가입 불가, 장기 체류는 거절처리함 2. 신체적위험도(身體的危險度)에 따른 인수차별화(引受差別化) (1) 표준미달체 인수방법 o 체증성, 항상성 위험에 대한 초과위험지수를 보험금삭감법으로 전환 사망보험에 적용(최대 5년(年))하여 5년(年)이후 보험 Risk노출 심각 o 보험료 할증은 일부 회사에서 주(主)보험 중심으로 사용중(中)이며, 총위험지수 300(8단계)까지 인수 - 주(主)보험 할증시 특약은 가입 불가하며, 암 기왕력자는 대부분 거절 o 신체부위 39가지, 질병 5가지에 대해 부담보 적용(입원, 수술 등(等)생존급부에 부담보) (2) 비(非)흡연/ 우량체 보험료 할인 o 1999년(年)최초 도입 이래 $3{\sim}4$개의 위험요소로 1개 Class 운영중(中)임 S생보사의 경우 비(非)흡연우량체, 비(非)흡연표준체의 2개 Class 운영 o 보험료 할인율은 회사, 상품에 따라 상이하며 최대 22%(영업보험료기준)임. 흡연여부는 뇨스틱을 활용 코티닌테스트를 실시함 o 우량체 판매는 신계약의 $2{\sim}15%$수준(회사의 정책에 따라 상이) Ⅳ. 언더라이팅 기법(技法) 선진화(先進化) 방안(方案) 1. 직업위험도별 보험료 차등 적용 o 생 손보 직업위험등급 일원화와 연계하여 3개등급으로 위험지수개편, 비위험직 기준으로 보험요율 차별적용 2. 위험취미에 대한 부담보 적용 o 해당취미를 원인으로 보험사고(사망포함) 발생시 부담보 제도 도입 3. 표준미달체 인수기법 선진화를 통한 인수범위 대폭 확대 o 보험료 할증법 적용 확대를 통한 Risk 헷지로 총위험지수 $300{\rightarrow}500$으로 확대(거절건 최소화) 4. 보험료 할증법 보험금 삭감 병행 적용 o 삭감기간을 적용한 보험료 할증방식 개발, 고객에게 선택권 제공 5. 기한부 보험료할증 부가 o 위암, 갑상선암 등(等)특정암의 성향에 따라 위험도가 높은 가입초기에 평준할증보험료를 적용하여 인수 6. 보험료 할증법 부가특약 확대 적용, 부담보 병행 사용 o 정기특약 등(等)사망관련 특약에 할증법 확대, 생존급부 특약은 부담보 7. 표준체 고객 세분화 확대 o 콜레스테롤, HDL 등(等)위험평가요소 확대를 통한 Class 세분화 Ⅴ. 기대효과(期待效果) 1. 고(高)위험직종사자, 위험취미자, 표준미달체에 대한 보험가입 문호개방 2. 보험계약자간 형평성 제고 및 다양한 고객의 보장니드에 부응 3. 상품판매 확대 및 Risk헷지를 통한 수입보험료 증대 및 사차익 개선 4. 본격적인 가격경쟁에 대비한 보험사 체질 개선 5. 회사 이미지 제고 및 진단 거부감 해소, 포트폴리오 약화 방지 Ⅵ. 결론(結論) o 종래의 소극적이고 일률적인 인수기법에서 탈피하여 피보험자를 다양한 측면에서 위험평가하여 적정 보험료 부가와 합리적 가입조건을 제시하는 적절한 위험평가 수단을 도입하고, o 언더라이팅 인수기법의 선진화와 함께 언더라이팅 인력의 전문화, 정보입수 및 시스템 인프라의 구축 등이 병행함으로써, o 보험사의 사차손익 관리측면에서 뿐만 아니라 보험시장 개방 및 급변하는 보험환경에 대비한 한국 생보언더라이팅 경쟁력 강화 및 언더라이터의 글로벌화에도 크게 기여할 것임.

  • PDF

The Study of Dinning-out Behavior and Preference on Korean Foods by Age Groups (외식소비자의 연령별 외식행동과 한식에 대한 선호도 조사연구 - 서울, 경기, 천안 지역을 중심으로 -)

  • Yoon, Hei-Ryeo
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.5
    • /
    • pp.608-614
    • /
    • 2005
  • The object of this research is to analyze and classify the dining-out behavior and preference on Korean food by age groups and to make counter proposals for better marketing and planning strategies. Major dining out motives were lack of time, the easiness of preparation, and schedule. For lunch, the schedule was the major dining-out motive. For dinner, the respondents in their 30s and below answered social gathering was their major dining-out motive (40.7% and 31.3% respectively). On the other hand, for the respondents in their 40s and 50s, the family gathering was the major dining motive (50.4% and 55.3% respectively) (${\chi}^{2}=68.081,\;p<0.001$). For dining out frequency, 1-2 dining out per a week had the highest percentage, among which the respondents in their 30s was 42.9% (the highest) and the respondents in their 50s was 18% (the lowest). For the dining-out cost, the respondents in their 30s and below spent more on dinner rather than breakfast or lunch. For the menu preference of Korean foods, Doenjangjigae had the highest percentage. In case of Kimchi, the respondents in their 40s showed higher preference than the respondents in their 30s. Interestingly, the preference for Kimchi was higher in the respondents younger than 30 rather than in the respondents in their 30s. and the respondents older than 40 (p<0.05). Preference for Jangachi was considerably low in the respondents younger than 40, which implies that younger people don't incline to traditional Korean Mitbanchan. The dining-out motive was different in each age group. Now, the dining out motive is not restricted to home meal replacement. Social gatherings are increasing and the consumers of dining-out industry are being diversified. These suggest the increased need for classifying and analyzing the consumers by age groups to get more information on consumer behavior and tastes.