• Title/Summary/Keyword: 마찰 속도

Search Result 621, Processing Time 0.024 seconds

Hazards of decomposition and explosion for Tert-butylperoxymaleate (터셔리부틸퍼옥시말레이트의 분해 및 폭발 위험성)

  • Lee, Jung-Suk;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, hazards of decomposition and explosion for tert-butylperoxymaleate(TBPM), an organic peroxide, were evaluated by using various equipment to determine the cause of a fire explosion accident. As a result of DSC analysis, the instantaneous power density of TBPM was 26,401 kW/ml, and the NFPA reactive index(Nr) was classified as 4. And the positive value of EP(explosive propagation) and SS(shock sensitivity) showed that the TBPM had a potential hazard of explosion. From the experimental results, the shock sensitivity and friction sensitivity was rated as class 4 and 5, respectively. In the pressure vessel test, TBPM was ranked USA-PVT No.4 and evaluated as a self-reactive substance. In the combustion rate test, TBPM had the combustion rate of 167 mm/sec and was evaluated as the flammable solid classification 2 in GHS.

Integral Sliding-based Dynamic Control Method using Genetic Algorithm on an Omnidirectional Mobile Robot (전방향 모바일 로봇에서 유전알고리즘을 이용한 적분 슬라이딩 기반 동적 제어 기법)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1817-1825
    • /
    • 2021
  • Omnidirectional mobile robots can be mobile in any direction without changing the robot's direction, making them easy to apply in many applications and providing excellent maneuverability. Omnidirectional mobile robots have non-linear dynamic components such as friction, making them difficult to model accurately. In this paper, we linearize the mobile robot system using the mobile robot's inverse dynamics and integral sliding mode control method to remove these nonlinear components. And the position and velocity gains are optimized using a genetic algorithm to realize the optimal performance of the proposed system control method. As a result of the performance evaluation, the genetic algorithm's control method showed superior performance than the control method with an arbitrary gain. And the proposed inverse dynamic and integral sliding mode control method can be applied to other control methods. It can be beneficial for designing a linear control system.

A Study on the Simulation of Underground Acoustic Telemetry (지중 원격 음파통신 시뮬레이션 연구)

  • Shin, Younggy
    • Plant Journal
    • /
    • v.18 no.2
    • /
    • pp.41-45
    • /
    • 2022
  • The conventional communication method using mud flow pressure waves has a speed of 1-2 bps, so it takes a long time to communicate, making real-time control impossible. Although the sound wave communication method for improving the communication speed by 10 times or more has been commercialized, its use is limited due to its high price and there are not many application cases. In this study, the simulator corresponding to the facility was developed to develop performance similar to the actual test results. For simulating sound wave communication through a drill pipe, we proposed a governing equation that can simulate friction damping by mud and developed a numerical analysis model. The attenuation factor was corrected by comparing it with the attenuation rate of sound wave energy at the drilling site. The developed numerical analysis model was applied to the QPSK modulation type communication algorithm to confirm the excellent performance of the communication error rate of 0.04% in the ground. This is the communication performance under the condition that noise has not been mixed yet, and in order to apply it, the technology of reproducing the actual noise signal for mixing by securing the field noise data was established.

  • PDF

Study on the Physical Properties of Artificial Soil for Tillage Experiments (경운실험(耕耘實驗)을 위(爲)한 인공토양(人工土壤)의 물리적(物理的) 특성(特性)에 관(關)한 연구(硏究))

  • Kim, Kee-Dae;Hur, Yun-Kun;Kim, Man-Soo;Kim, Soung-Rai
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1978
  • For improvement and new design of tillage equipments, indoor test is very useful and more desirable than outdoor because the experiment of outdoor is very difficult and its cost is expensive. This study was carried out to determine the physical properties of artificial soil suitable for the indoor test with the soil bin manufactured at the workshop of the Dept. of Agricultural Machinery Engineering. The artificial soil being studied was made with very similarity to the natural soil of the experimental plots of Chungnam National University, and it consist of 39.35 percent, by weight of bentonite and 48.10 percent of sand with 12.55 percent of SAE 10W oil. The results are summarized as follows: 1. Bulk density increased with increasing number of rolling, and its relationship could be expressed. $y=1.073200+0.070780x-0.002263x^2$ where, y=bulk density ($g/cm^3$), x=number of rolling. These results could be explained that the effect of rolling velocity on the bulk density was not singnificant in the range of 4.5~10.4 em/sec. 2. The absolute soil hardness depended directly upon number of rolling, and their relationship could be expressed by the equation. $y=37.74(0.64 +0.17x-0.0054x^2)/(3.36-0.17x-0.0054x^2)^3$. where, y=absolute soil hardness($kg/cm^3$), x=number of rolling. 3. Relationship between the bulk density and absolute soil hardness could be expressed by the equation; $y=37.74(2.46x-2.02)/(6.02-2.46x)^3$. where, y=absolute soil hardness, x=bulk density. 4. The cohesion and the angle of internal friction of artificial soil were increased with increasing its bulk density. According to the cohesion and angle of internal friction, at the range of 1.60~1.75 ($g/cm^3$) of bulk density, this artificial soil was similar with sandy loam of 29.5% moisture content of natural soil. 5. Sliding-fricfion coefficient of steel plate on the artificial soil was 0.3~0.4 and rubber plate on it is 0.64~0.72. Those values were very similar with those of natural soil being studies by many others.

  • PDF

A Study on the Development of the Engine Room Fan Control System and ERFCS Algorithm for Ships Energy Saving (선박 에너지 절감을 위한 기관실 팬 제어 시스템 구축 및 알고리즘에 관한 연구)

  • Kang, Young-Min;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.642-648
    • /
    • 2015
  • Recently, there have been many studies pertaining to reducing energy consumption on ships. As part of those studies, the energy consumption of ships can be reduced by understanding and controlling the varying loads, excluding fixed loads. In existing ships, engine room fans are usually operated based on the actual experience of the crew without any special guidelines. To realize energy reduction, we investigate the characteristics of engine-room fans, and we propose an energy-management system called the engine room fan control system (ERFCS) and the ERFCS algorithm. The ERFCS controls the fan speed depending on the temperature and pressure, where one to four fans are operated depending on changes in the load. In addition, the minimum rotation speed of the engine-room fan was limited to 50% to prevent the surging phenomenon, which is due to fan damage or low pressure resulting from mechanical friction or heating at low fan speeds. We develop a fan control system simulation model using LabVIEW that is based on the proposed algorithm and ISO 8861. Finally, we perform simulations to confirm that operation of the proposed fan control system is possible using only 46.4% of the power required by the existing method.

Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill (교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Batjargal, Uyanga;Bor, Amgalan;Batchuluun, Ichinkhorloo;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.456-466
    • /
    • 2017
  • This work investigated the particle morphology change to difference in milling media in a metal based composite fabrication process using a stirred ball mill with ball behavior of DEM simulation. A simulation of the three dimensional motion of grinding media in the stirred ball mill for the research of grinding mechanism to clarify the force, kinetic energy, and medium velocity of grinding media were calculated. In addition, the rotational speed of the stirred ball mill was changed to the experimental conditions for the composite fabrication, and change of the input energy was also calculated while changing the ball material, the flow velocity, and the friction coefficient under the same conditions. As the rotating speed of the stirred ball mill increased, the impact energy between the grinding media to media, media to wall, and media and the stirrer increased quantitatively. Also, we could clearly analyze the change of the particle morphology under the same experimental conditions, and it was found that the ball behavior greatly influences in the particle morphology changes.

Effects of Grain Size Distribution on the Shear Strength and Rheological Properties of Debris Flow Using Direct Shear Apparatus (직접전단장비를 이용한 토석류의 전단강도 및 유변학적 특성에 대한 입도분포의 영향 연구)

  • Park, Geun-Woo;Hong, Won-Taek;Hong, Young-Ho;Jeong, Sueng-Won;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.7-20
    • /
    • 2017
  • In this study, effects of grain size distribution on the shear strength and rheological properties are investigated for coarse- and fine-grained soils by using direct shear apparatus. Shear strengths are estimated for fine-grained soils with the maximum particle size of 0.075 mm and coarse-grained soils with the maximum particle size of 0.425 mm and fine contents of 17% prepared at dry and liquid limit states. The direct shear tests are conducted under the relatively slow shear velocity, which corresponds to the reactivated landslide or debris flow after collapse according to the landslide classification. In addition, for the evaluation of rheological properties, residual shear strengths for both fine- and coarsegrained soils prepared under liquid limit states are obtained by multiple reversal shear tests under three shear velocities. From the relationship between residual shear strengths and shear rates, Bingham plastic viscosity and yield stress are estimated. The direct shear tests show that cohesions of fine-grained soil are greater than those of coarse-grained soil at both dry and liquid limit states. However, internal friction angles of fine-grained soil are smaller than those of coarse-grained soil. In case of rheological parameters, the plastic viscosity and yield stress of fine-grained soils are greater than those of coarse-grained soils. This study may be effectively used for the prediction of the reactivated landslide or debris flow after collapse.

The Three -Dimensional Stability Analysis of the Diaphragm Wall under the Influence of External Loads (상재하중의 영향을 고려한 Diaphragm Wall의 3차원 안정도 해석)

  • Gu, Ja-Gap;Lee, Sang-Deok;Jeon, Mong-Gak
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.43-50
    • /
    • 1991
  • To analyze the effects of ground water levels and external loads on the stability of a Dia- phragm wall, the three models of Bell, Piaskowski/kowalewski, and Washbourne were modified and extended to develop a new program SL3D. Comparing to the other two models, Washbourne's model shows the stability in on safes at the beginning of the excavation and increase as the excavation continue . Also the effects of various design factors, such as the density of slurry, ground water levels, the friction angle of soil, external loads and the length of trench, have been analyzed and a nomogram was developed.

  • PDF

EFFECTS OF THE REYNOLDS AND KNUDSEN NUMBERS ON THE FLOW OF A MICRO-VISCOUS PUMP (Reynolds 수와 Knudsen 수가 초소형 점성펌프에 미치는 영향)

  • Kang, D.J.;Ivanova, Ivelina Ivanova
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.14-19
    • /
    • 2008
  • Effects of the Reynolds and Knudsen numbers on a micro-viscous pump are studied by using a Navier-Stokes code based on a finite volume method. The micro viscous pump consists of a circular rotor and a two-dimensional channel. The channel walls are treated by using a slip velocity model. The Reynolds number is studied in the range of $0.1{\sim}50$. The Knudsen number varies from 0.01 to 0.1. Numerical solutions show that the pump works efficiently when two counter rotating vortices formed on both sides of the rotor have the same size and intensity. As the Reynolds number increases, the size and intensity of the vortex on the inlet side of the pump decrease. It disappears when the Reynolds number is larger than about Re=20. The characteristics of the performance of the pump is shown to deteriorate, in terms of mean velocity and pressure rise, as the Reynolds number increases. The Knudsen number shows a different effect on the characteristics of the pump. As it increases, the mean velocity and pressure rise decrease but the characteristics of the vortex flow remains unchanged, unlike the effect of Reynolds number.

Effects of Humidity and Sliding Speed on the Wear Properties of $Si_3N_4$ Ceramics (습도 및 미끄럼 속도에 따른 질화규소의 마찰 마모 특성에 관한 연구)

  • 이기현;김경웅
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.63-69
    • /
    • 1993
  • The wear properties of two types of $Si_3N_4$(silicon nitride) exposed to high and low humidity were examined experimentally for various sliding speed. Bearing steel was used as the disk material at pin-on-disk type sliding. Wear rates of pressureless sintered-plus-hot-isostatic pressed Si3N4 were slightly lower than those of pressureless sintered $Si_3N_4$. It was observed that adsorbed moisture and sliding speed markedly influenced the wear properties of $Si_3N_4$. The highest wear rate was obtained under the high humidity and low sliding speed condition. As the sliding speed was increased, wear rates were decreased and the humidity effect on the wear rates of $Si_3N_4$ was lowered. The result that the $Si_3N_4$ pin showed a high wear rate under the high humidity condition was explained by the property change due to the adsorbed moisture, plowing action by the hard particles of $Fe_2O_3$ from the disk, and the corrosion effect at $Si_3N_4$ surface. Increase in sliding speed was supposed to have reduced the humidity effect on wear rate of $Si_3N_4$ by raising the temperature of both the bearing steel disk and $Si_3N_4$ pin specimen.