• Title/Summary/Keyword: 마찰특성평가

Search Result 446, Processing Time 0.024 seconds

An evaluation of the comfort and pattern design for cover fabric of train seats. (철도 차량 시트 커버직물의 패턴 디자인과 쾌적성 평가)

  • 이현자;박세진;박길순;이현영
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.183-189
    • /
    • 2000
  • 시트 커버 직물은 철도차량 내부 인테리어와 실내를 구성하며, 시각적으로 커버 직물의 디자인 요소 중 패턴과 쾌적한 커버지가 철도차량에 대한 전체적인 이미지를 형성하게 된다. 본 연구는 한국인의 감성에 따른 시트 패던 디자인과 쾌적한 시트 커버 직물의 요건을 제시하고자 한다. 디자인 분석체계는 패턴 디자인의 최소단위를 Pattern Primitive(PP), 최소 반복 단위를 Repealed Pattern Unit(RPU)로 개념화하여 분류하여 파악한다. 또한 쾌적하고 안락한 시트를 위해서 착석 상태에서의 열수분 전달특성과 직물의 발수도, 일광견뢰도, 마찰견뢰도, Q-max, 공기투과도, 마찰대전압 등 물리적 특성을 비교한다.

  • PDF

Evaluation of Interface Friction Properties between Coarse Grained Materials and Geosynthetics (조립재료와 지오신세틱스의 접촉면 마찰특성 평가)

  • Chang, Yongchai;Lee, Seungeun;Seo, Jiwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.53-59
    • /
    • 2008
  • The purpose of the study was to evaluate how much gastropod shell effected its properties better than crushed stone as coarse grained materials by comparing friction properties of a contact surface between coarse grained materials and geosynthetics with the large-scale direct shear test. To achieve the purpose, the study compared and analyzed friction coefficient and friction angle by making crushed stone or gastropod shell into model ground and by installing and shearing non-woven fabric or geostrip geosynthetics. As the results of the analysis, crushed stone had the internal friction angle of $33.8^{\circ}$ when its unit weight was $13.7kN/m^3$ and gastropod shell had the internal friction angle of $35.4^{\circ}$ when its unit weight was $5.4kN/m^3$. Also, the friction angle of a contact surface between geosynthetics and crushed stone was larger than the friction angle of a contact surface between geosynthetics and gastropod shell.

  • PDF

Evaluation of Skin Friction on Large Drilled Shaft (대구경 현장타설말뚝의 주면 마찰력 평가)

  • Hong Won-Pyo;Yea Geu-Guwen;Lee Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2005
  • Both static pile load test with load transfer measuring system and the pile dynamic load test are performed to estimate the skin friction and behavior characteristics of a large drilled shaft. And the numerical modeling of large drilled shaft is performed by applying the FDM program. Since the magnitude of friction resistance depends on the relative displacement between soil and shaft, load and displacement at the arbitrary depth along the large drilled shaft are estimated to analyze the correlation. According to the measuring results of load transfer, unit skin friction along the large drilled shaft was fully mobilized at gravel layer in the middle of shaft and the frictional resistance transmitted to bedrock was relatively small. Also, even for the same drilled shaft, the results of PDA and static load test are different with each other and the difference is discussed.

Fabrication and Characterization of Triboelectric Nanogenerator based on Porous Animal-collagen (다공성 동물성-콜라겐을 이용한 마찰전기 나노발전기 제작 및 특성평가)

  • Shenawar Ali Khan;Sheik Abdur Rahman;Woo Young Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.179-187
    • /
    • 2023
  • Nanogenerators containing biomaterials are eco-friendly electronic devices in terms of being a non-polluting energy source and biodegradable electronic waste. In particular, the amount of waste will be also reduced if the biomaterial can be extracted from biowaste. In this study, a triboelectric nanogenerator was fabricated using animal collagen present in the skin of a mammal and its characteristion was proformed. The electro-anodic layer of the triboelectric nanogenerator was constructed by forming a collagen film using the spin coating method, and it was confirmed that the film was porous from scanning electron microscopy. The fabricated triboelectric nanogenerator exhibited an open-circuit voltage from 7 V at 3 Hz to 15 V at 5 Hz due to periodic mechanical movement, and a short-circuit current of 3.8 uA at 5 Hz. In conclusion, collagen-containing triboelectric nanogenerators can be power source for low-power operating devices such as sensors and are also expected to be useful for reducing electronic waste.

Numerical Study on the Skin Friction Characteristics of Tension Type Ground Anchors in Weathered Soil (풍화토 지반에 적용된 인장형 앵커의 주면마찰응력 분포특성에 대한 수치해석적 연구)

  • Jeong, Heyon-Sik;Han, Kwang-Suk;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.39-56
    • /
    • 2017
  • Distribution of both axial force and skin friction should be investigated in order to estimate pull-out capacity of ground anchors. Numerical method of computing load-transfer characteristics of the ground anchors, however, has not been specified and studies on this area are not sufficient. This study suggested the numerical method of simulating the characteristics of axial force and skin friction distribution against the tension type ground anchors. Also, debonding behaviors of skin friction and axial force were calculated by the suggested numerical method as a function of load levels. As a result of the review, it is confirmed that the distributions of axial force and skin friction by the suggested numerical method are relatively similar to those of field test results.

A Study on the Characteristics of High-Tension Bolted Joints' Behavior due to Surface Condition (표면상태에 따른 고장력볼트 마찰이음부의 거동특성에 관한 연구)

  • Cho, Sun Kyu;Hong, Sung Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.421-430
    • /
    • 1997
  • In this study, the static and the fatigue tests were performed with high tension bolted joints, of which the surfaces were spread with inorganic zinc-primer after shot-blast, and milling surface, and steel-natural surface, difference of friction surface condition were examined by comparing the esults of tests. From the result of synthetical investigation of this study. it is proper that using the torque management method in order to introduce design axial force to blots, and the provision of specifications that initial axial forces must be 110% of design axial forces is proper. Decreasing ratio of axial forces to initial force is proportional to common lorgarithms of time progress, it converge constant value after 20 hours, and decreasing ratio is little related to the roughness of friction surface. Sliding coefficient of milling, spreading inorganic zinc-primer, just producting is great in order and sliding forces are dependent on the applied axial forces, but if the applied axial forces are great, sliding coefficient become small by a loss of roughness. So it is confirmed that relation between the applied axial forces and the sliding forces are not proportional linearly. From the result of estimation on fatigue strength, all specimens satisfy the specifications with B-grade and milling surface is lower than the others about 14% in fatigue strength because in milling surface lose the function of friction-types joints at lower number of cycles. From the result of eximination for the distribution area of compressive force, friction area near to inside bolt is wider in the direction of stress than near to outside. It is guessed that this situation occurs because outside bolts firstly change from the friction connection to the bearing connection.

  • PDF

Realization of A Portable Friction Coefficient Tester (휴대용 마찰계수 시험기 구현)

  • Seo, Sang Woon;Lyou, Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.4
    • /
    • pp.67-73
    • /
    • 2015
  • Recently in the evaluation of physical properties of a material, its surface friction characteristics is much required. This study treats the development of portable and affordable friction coefficient tester, which includes utensil design and application, measurement circuit design and layout, and microprocessor based firmware building. Also, real applicability of the present portable friction coefficient tester has been shown via performance comparisons with the existing standard tester.

PECVD 장비를 이용해 증착시킨 DLC 박막의 첨가원소(a-C:H:X)에 따른 고내식, 내열 특성

  • Kim, Jun-Hyeong;Mun, Gyeong-Il;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.225-225
    • /
    • 2012
  • DLC (Diamind-Like Carbon) 코팅은 1970년대 이온주입기술을 통하여 개발된 것이 처음으로 알려져 있으며, 다이아몬드 구조인 SP3 구조와 그라파이트 구조인 SP2 구조가 혼재되어 있으면서 제조 방법에 따라 수소와 Si 및 다양한 금속을 내재시킬 수 있는 코팅 물질이다. DLC는 높은 경도, 내마모성, 윤활성, 표면조도 등 뛰어난 기계적 특성과 전기절연성, 화학적 안정성 그리고 높은 광학적 투과성을 가져 산업적 활용 잠재력이 높은 재료로 평가되고 있으며, 이외에도 낮은 공정 온도에서 증착할 수 있고, 고경도와 낮은 마찰계수를 가지고 있는 장점이 있다. 그러나, DLC가 열적으로 불안정하기 때문에 사용되는 환경이 $500^{\circ}C$ 이상이 되면 DLC는 자체의 성질을 잃고 거의 흑연에 가까운 물질이 되어버리는 문제가 있고, 또한 높은 압축응력과 기재와의 낮은 밀착력이 단점으로 나타나고 있다. 이에 본 연구는 그런 단점을 보완하고자 PECVD (Plasmas Enhanced Chemical Vapor Deposition) 방법으로 DLC박막에 여러 가지 첨가원소(F,Si,0)를 사용하여 증착시킨 후 400, 500, $600^{\circ}C$에서 1시간동안 열처리를 진행하였으며, 그에 따른 내열 특성을 평가하였다. 또한 염수분무 테스트를 통한 박막의 내식 특성을 평가하였다. DLC박막의 구조는 Raman Spectra을 통해, Sp3 (like diamond) peak와 Sp2 (like graphite) peak 의 혼재 여부를 분석하였고, FE-SEM을 이용하여 막의 표면 및 단면을 관찰하였다. 스크래치 테스트를 통해 DLC박막의 밀착력을 측정하였으며, 볼 온 디스크 타입의 Tribo-meter을 이용하여 마찰계수 변화를 관찰하였다. 또한 나노인덴터를 이용하여 미소경도를 측정하였다. 그 결과 일반 DLC 막에 비해 첨가원소가 함유된 DLC 박막에서 내식성 및 내열특성이 향상되었다.

  • PDF

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.

A Study on the Effects of Additives on the Friction and Wear Properties of PTFE Composite (첨가제에 의한 PTFE 복합재료의 마찰마모 특성에 관한 연구)

  • 김용직;김윤해
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.11-18
    • /
    • 2000
  • This study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. At the PTFE and polyimide alone mixture specimens, PTFE80%-polyimide20%, which shows the lowest mean friction coefficient and specific wear rate at 0.94m/s sliding speed. In case of the specific wear rate, copper30% specimen shows the lowest value of 2.537-5(mm3/Nm) in all specimens. It considered that the friction coefficient is affected by generating speed and quantity of wear film. In case specific wear rate, it is attributed to the fact that the surface hardness of wear film is proportioned to specific wear rate.

  • PDF