• Title/Summary/Keyword: 마찰등가투과도

Search Result 2, Processing Time 0.02 seconds

Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis (다공질 유동해석을 위한 Darcy-Weisbach 관계식의 확장)

  • Shin, Chang Hoon;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.229-238
    • /
    • 2017
  • This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.

Nonlinear Interaction between the Permeable Submerged Breakwater and Third Order Stokes Waves (사석잠제와 Stokes 3차파와의 비선형간섭에 관한 연구)

  • Jeong, Yeon-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.223-234
    • /
    • 1998
  • Recently, the interests of the construction of the permeable submerged breakwaters have been increased to preserve and to improve the coastal environment, and to control the incident waves and littoral transport. It is very important to predict the wave transformation precisely over the permeable submerged breakwaters. This study discusses nonlinear wave transformation and characteristics by using BEM based on the frequency domain method of the 3rd-order Stokes waves. The Dupuit-Forchheimer formula is applied to the analysis of the fluid resistance of rubble stones, and the equation about equivalent linear frictional coefficient is newly modified based on the Lorentz's condition for the equivalent work. The numerical results are compared with the experimental ones for verification. These two results give a close agreement each other. It is confirmed that the present method of the 3rd-order Stokes waves estimates more precisely than that of the 2nd-order Stokes waves.

  • PDF