• Title/Summary/Keyword: 마찰교반 공구

Search Result 13, Processing Time 0.031 seconds

New technology Trends on Friction Stir Welding Based on Milling Process in terms of Tools, Machine and Applied Parts (밀링기반 마찰교반접합 신기술동향: 공구, 장비 및 응용부품)

  • Noh, Joong-Suk;Kim, Ju-Ho;Go, Gun-Ho;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.37-44
    • /
    • 2013
  • Friction stir welding (FSW) is a solid state joining technique that has expanded rapidly since its development in 1991 and has numerous applications in a wide variety of industries. This paper introduces the basic principles of friction stir welding (FSW) and presents a survey of the latest technologies and applications in the field. The basic principles that are discussed include the terminology, tool/workpiece processes, FSW merits and process variants. In particular, the process variants including the rotation speed and traveling speed are discussed, which include the defect-free zone in an oxygen free copper and Al alloy, respectively. Multiple aspects of the FSW machine are developed, including a horizontal 2D FSW machine and a hybrid complex FSW machine. The latest applications are introduced, with an emphasis on the recent advances in the aerospace, automotive, and IT display industries. Finally, the direction for future research and potential applications are examined.

Mechanical Properties and Microstructure on Dissimilar Friction-Stir-Weld of Aluminium Alloys (FSW된 이종알루미늄합금의 접합 특성 및 미세 조직)

  • Han, Min-Su;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2011
  • Dissimilar joining of aluminum 6061-T6 alloy to aluminum 5083-O alloy was performed using friction-stir welding technique. The mechanical properties, hardness, macro- and micro-structure on dissimilar friction-stir-weld aluminium alloy were investigated. Mechanical properties of the weld mainly depend on which Al alloy is placed at the retreating sides of the rotating tool respectively during dissimilar friction-stir weld because the microstructure of stir zone was mainly composed of welded Al alloys of the retreating side. Onion ring pattern was observed like lamella structure stacked by each Al alloy in turn. It apparently results in defect-free weld zone that traverse speed was changed to 124 mm/min under conditions of tool rotation speed like 1250 rpm with 5 mm of tool's prove diameter, 4.5 mm of prove length, 20 mm of shoulder diameter, and $2^{\circ}$ of tilting angle. The 231 MPa of ultimate stress and the 121 MPa of yield point are obtained about the friction-stir-welded Al 6061-T6(AS) to Al 5083-O(RS).

Evaluation of the Effect of Rotating Tool for Friction Stir Welding Al6005-T6 (회전공구 회전속도에 따른 알루미늄 합금 (Al6005-T6)의 마찰교반접합 특성 연구)

  • Choi, Dooho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.124-129
    • /
    • 2017
  • In this study, we report characteristics of friction stir welding (FSW) technique applied to Al-6005-T6 extruded sheets, which is a common material for railway car bodies. With the welding speed fixed at 300 mm/min, the revolution per minute (RPM) of the rotating tool was varied from 600 to 1800 RPM, with the aim at evaluating the resultant microstructure and mechanical behaviors. Comparison is also made with the conventional Metal Inert Gas (MIG) welding technique. Unlike MIG, no micro-voids were observed for FSW specimens. Hardness measurement revealed that the increased heat input by increasing RPM results in widened heat affected zone (HAZ) and decreased hardness for HAZ due to grain coarsening. Hardness results for the nugget do no show difference. During tensile tests, specimens fractured at HAZ, and increasing rpm led to decrease of the yield stress and tensile stress for the selected RPM range, which is considered to be due to the grain coarsening for HAZ.

Relationship Between Tool Rotating Speed and Properties of Friction Stir Welded Al 6005-T6 (알루미늄 합금 (Al6005-T6)의 마찰교반접합 시 공구의 회전속도와 접합 특성의 상관관계 연구)

  • Choi, Dooho
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.7
    • /
    • pp.94-99
    • /
    • 2019
  • Friction stir welding was first reported by TWI(The Welding Institute) in 1991, and this welding method has been rapidly used in various industrial areas such railway, automobile, aerospace and shipbuilding industry. Here, we study core characteristics of friction stir welding (FSW) applied to Al 6005-T6 extruded sheets, which is the typical alloy used for railway car bodies. With the fixed welding speed of 500 mm/min, the rotating tool speed was varied from 600 to 1800 RPM. The results of hardness measurement revealed that the hardness of nugget area is ~70% with respect to the parent material, and for the selected range of rotation speed, no clear dependence was observed and the hardness values close to the parent materials were achieved for the area located 5 mm away from the welding interface. The tension test shows that yield strength and tensile strength were slightly decreased with increasing RPM, with no observed difference for the elongation.

A Study on the Friction Stir Welding Properties of A6005 Extruded Aluminum Panels (알루미늄 A6005 압출 패널의 마찰교반용접 특성 연구)

  • Park, Young-Bin;Koo, Jeong-Seo;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.512-517
    • /
    • 2009
  • Extruded aluminium panels have been widely used for railway vehicle structures because -of their light specific weight and other merits. In the past, GMAW (Gas Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) were mainly used to join aluminium panels. But recently friction stir welding (FSW) is widely used due to its lots of advantage. In this study aluminium A6005 which is used for car body structures was chosen. The influences of main parameters on mechanical properties such as: pin (tool) rotating speed, pin transition speed, shoulder, diameter, pin length and tilting angle were examined. Optical microscope and scanning electron microscope (SEM) observation, micro hardness tests, and tensile tests were carried out.

Evaluation on Tensile Characteristics of Extruded Aluminum Panel Joints by Friction Stir Welding Parameters (마찰교반 용접변수에 따른 알루미늄 압출판재의 인장특성 평가)

  • Lim, Byung-Chul;Kim, Young-Moon;Kim, Won-Seop;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.614-618
    • /
    • 2018
  • The changes in the mechanical properties according to the width of the tool shoulder, rotation speed and moving speed in friction stir welding (FSW) are evaluated using Al 6061-T6. The results indicated that the tensile strength value increases with increasing rotation speed. The higher the moving speed of the tool shoulder, the lower the tensile strength, regardless of the tool type. A higher tensile strength value was generally obtained with a tool shoulder diameter of 12mm (TSD12) than with 8mm. When the moving and rotation speeds exceed a limiting value, a stabilization stage is reached, in which (the tool shoulder diameter?) no longer affects the material properties. At a tool shoulder diameter of 8mm (TSD8), the material properties are decreased and the mixture of material in the welding area is incomplete in comparison with the tool type of TSD12. The tensile strength value is decreased at a rotation speed of 1500 rpm. As a result, a rotation speed higher than the threshold value is needed in order for and the transition temperature to be reached, which allows the complete mixing of the material in the welding area.

Mechanical Properties of Joints according to Welding Methods and Sensitivity Analysis of FSW's Welding Variables for A6005 Extruded Alloy of Rolling Stock (철도차량용 A6005 압출재의 용접방법에 따른 접합부 기계적 특성 및FSW 용접 변수의 민감도 분석)

  • Kim, Weon-Kyong;Won, Si-Tae;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Recently, extruded aluminium-alloy panels have been used in the car bodies in order to meet the needs for the speed-up and light-weight of the railway vehicles. Most of the car bodies were jointed by arc weldings, like GMAW (GasMetal Arc Welding) and GTAW (Gas Tungsten Arc Welding), but these weldings became fairly worse the mechanical properties of the junction than the base metal. Nowadays, FSW (Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. In this study, the mechanical properties of the joints in both FSW and GMAW for A6005 extruded aluminium-alloy sheets have discussed. In addition, the relationships between the welding conditions and the mechanical properties for the joint of FSW have analyzed through the sensitivity analysis. It can be concluded that the mechanical properties for the joint of FSW are better than those of GMAW and the welding speed is the most sensible welding condition in the process of FSW.

Weldability and properties of lap joints by pin FSW with 1050 Al sheet (1050 Al판재의 핀 마찰 교반용접에 의한 실험적 연구)

  • Jang, Seok-Ki;Park, Jong-Seek;Han, Min-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.394-400
    • /
    • 2007
  • The properties and weldability of lap joints by PFSW with 1050 Al sheet was investigated according to tool shape. dimension and welding condition. Tensile shear test was carried out for lap jointed specimen, and the hardness in the joint regions was examined. Moreover interfacial joining length, metallograph and failure location of the lap-jointed cross section were discussed. Two tool types were a simple cylindrical type and a notched cylindrical type. Under joining conditions such as plunging depth of 2.2mm. rotating speed of 1600rpm and dwelling time of 3s, the tensile shear strength of lap-jointed specimen by the notched type tool was superior to that by simple cylindrical type tool. The maximum tensile shear load of lap jointed specimen was 5807N. Optimal dimensions of the notched type tool were as follows : diameters of the shoulder and pin were $18{\phi}mm$ and $10{\phi}mm$, and pin length was 2.2mm.

Effect of Welding Condition and Tool Shape on Defect Formation of Extruded AA6005 with Non-uniform Thickness using Load-Controlled Friction Stir Welding Technique (두께 불균일 AA6005 압출재의 하중제어 마찰교반접합에서 접합 조건과 툴 형상이 결함발생에 미치는 영향)

  • Yoon, Tae-Jin;Kang, Myung-Chang;Jung, Byong-Ho;Kang, Chung-Yun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.45-51
    • /
    • 2013
  • Friction stir welding using aluminum alloys has been widely applied for transportation vehicles because of the light specific weight, which can be used to obtain sound joint and high mechanical properties. This study shows the effects of rotation speed, welding speed, welding load, and tool shape on defect formation with extruded AA6005, which is used for railway vehicle structures of non-uniform thickness welded by friction stir welding using load control systems. Optical microscopy observations and liquid penetrant testing of each FSW joint were carried out in order to observe defect formation. Two kinds of defects, that of probe wear and that of lack of penetration in the bottom of the welded zone, were observed. In the case of using a taper shaped tool, the defect free zone is very narrow, within 100 kgf; however, in case of using a cylindrical shape tool, the defect free zone is wider.