• Title/Summary/Keyword: 마이크로 PEM 연료전지

Search Result 10, Processing Time 0.024 seconds

Fabrication and Testing of Glass Bipolar Plates for Application on Micro PEM Fuel Cells (마이크로 연료 전지를 위한 유리 바이폴라 플레이트의 제작 방법 및 성능 평가)

  • Jang, Bo-Sun;Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.289-292
    • /
    • 2009
  • The fabrication method of glass bipolar plates for micro PEM fuel cell application has been established and performance evaluation has been carried out. The advantages of glass bipolar plates for micro PEM fuel cells are light weight, high chemical resistivity, and easy manufacture. The MEMS fabrication process of anisotropic wet etching, thermal & UV bonding along with metal layer deposition has been introduced. From performance evaluation, it was shown that the micro fuel cell with a metal layer deposited on the reactive area yielded higher power density than the one without it. But both power densities of the two cases showed out to be adequate with the current status of micro fuel cell technology.

  • PDF

A Study on the BOS control of a small PEM fuel cell stack (소형 PEM 연료전지 스택의 BOS 제어에 관한 연구)

  • Kim, Tae-Hoon;Choi, Woo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.274-277
    • /
    • 2009
  • 본 논문에서는 소형 PEM(Proton Exchange Membrane) 연료전지 스택의 BOS(Balance of Stack) 제어에 관하여 논의한다. 별도의 가습 장치가 필요치 않고 BOS의 구성이 비교적 간단한 소형 PEM 연료전지 시스템에서는 팬과 퍼지밸브만의 제어를 통해 스택 내부 수분의 조절과 열 관리가 수행된다. 따라서 본 논문에서는 부하에 따른 최적의 공기유량을 계산하고 요구되는 유량의 공급을 위해 팬을 제어하는 알고리즘을 통해 소형 연료전지 시스템의 과도응답 특성과 안정성을 향상시키는 방법에 관하여 제안한다. 150W급 소형 연료전지 시스템을 꾸미고, 마이크로컨트롤러를 이용한 제어회로를 구현하여 실험함으로써 제안된 알고리즘의 유용함을 검증하였다.

  • PDF

A Micro PEM Fuel Cell System Including a Hydrogen Generator (수소 발생기를 포함한 마이크로 PEM 연료전지 시스템)

  • Kim, Dae-Joong;Zhu, L.;Shannon, M.A.;Masel, R.I.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.558-559
    • /
    • 2008
  • 본 논문은 미 일리노이 주립대 어바나-샴페인 캠퍼스에서 주로 군사용 응용 관련하여 개발 중인 마이크로 PEM 연료전지 시스템 개발에 대한 논문이다. 본 연구는 수소 저장 장치까지 포함하여 1 $mm^3$의 초소형 연료전지 시스템을 목표로 진행 중이며 본 논문은 이러한 진행 과정 중 화학적 하이드라이드 기반의 수소 발생기와 10 $mm^3$의 시스템 개발 과정에 대해 보고한다.

  • PDF

Control of Small PEM Fuel Cell Stack by a Microprocessor (마이크로프로세서를 이용한 소형 PEM 연료전지 스택의 제어)

  • Kim, Tae-Hoon;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.469-475
    • /
    • 2008
  • In this paper, control of small PEM(Proton Exchange Membrane) fuel cell stack by a microprocessor is introduced. The water management of fuel cell stack inside, a key technique in fuel cell control, can be achieved by adjusting the required air flow for fuel and cooling, and by purging the excessive water from the stack. It is very important to precisely control the BOS(Balance of Stack) since the stable operation of the fuel cell system mainly depends on it. In this study the fuel efficiency of the system is improved by the control of the system based on the measured air flow and purge cycle during the optimal operation and its effectiveness is proved by the experiments. The operating stability of the system is improved by the developed controller using a microprocessor and it is expected to be widely used for the control of small PEM fuel cell stack.

Experimental investigation of growth and transport behavior of single water droplet in a simplified channel of PEM fuel cell (PEM 연료전지의 단순화된 공기극 채널 내 단일 물방울의 성장 및 이동 특성에 대한 실험적 연구)

  • Kim, Bok-Yung;Kim, Han-Sang;Min, Young-Doug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • To investigate the characteristics of water droplet on the gas diffusion layer from both upper-view and side-view of flow channel, a rig test apparatus was designed and fabricated with L-shape acryl plate in a $1mm{\times}1mm$ micro-channel. This experimental device is used to simulate the single droplet growth and its transport process under fuel cell operating condition. As a first step, we investigated the growth and transport of single water droplet with working temperature and air flow velocity. The contact angle and its hysteresis of water droplet at departing moment are measured and analyzed. It is expected that this study can provide the basic understanding of liquid water droplet behavior in gas flow channel and GDL interface during the PEM fuel cell operation.

  • PDF

A PRELIMINARY STUDY ON THE EFFECT OF SLANTED GROOVE MIXER (SGM) ON THE PERFORMANCE OF A PEM FUEL CELL (기울어진 그루브 믹서가 고분자 전해질 연료전지 성능에 미치는 영향에 대한 기초연구)

  • Yun, S.C.;Park, J.W.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.93-96
    • /
    • 2009
  • In the cathode channel of a PEM fuel cell, the local concentration of oxygen near the gas diffusion layer (GDL) decreases in streamwise direction due to chemical reactions, which degrades the efficiency of the oxygen consumption and overall fuel cell efficiency. We numerically studied the influence of the swirling flow generated by a slanted groove mixer (SGM) on the concentration distribution of oxygen. We found that the swirling flow can increase the concentration of oxygen near the GDL, and subsequently improves the oxygen consumption rate.

  • PDF

A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid (스마트에너지캠퍼스 마이크로그리드에서 사물인터넷 융합 PEM 전기분해와 PEM 연료전지 모니터링 및 운영 연구)

  • Chang, Hui Il;Thapa, Prakash
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • In this paper we are trying to explain the effect of temperature on polymer membrane exchange water electrolysis (PEMWE) and polymer membrane exchange fuel cell (PEMFC) simultaneously. A comprehensive studying approach is proposed and applied to a 50Watt PEM fuel cell system in the laboratory. The monitoring process is carried out through wireless LoRa node and gateway network concept. In this experiment, temperature sensor measure the temperature level of electrolyzer, fuel cell stack and $H_2$ storage tank and transmitted the measured value of data to the management control unit (MCU) through the individual node and gateway of each PEMWE and PEMFC. In MCU we can monitor the temperature and its effect on the performance of the fuel cell system and control it to keep the lower heating value to increase the efficiency of the fuel cell system. And we also proposed a mathematical model and operation algorithm for PEMWE and PEMFC. In this model, PEMWE gives higher efficiency at lower heating level where as PEMFC gives higher efficiency at higher heating value. In order to increase the performance of the fuel cell system, we are going to monitor, communicate and control the temperature and pressure of PEMWE and PEMFC by installing these systems in a building of university which is located in the southern part of Korea.

Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel (고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF

Fabrication and Performance Evaluation of MEMS Methanol Reformer for Micro Fuel Cells (마이크로 연료전지용 MEMS 메탄올 개질기의 가공과 성능시험)

  • Kim, Tae-Gyu;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1196-1202
    • /
    • 2006
  • A MEMS methanol reformer was fabricated and its performance was evaluated in the present study. Catalytic steam reforming of methanol was selected because the process had been widely applied in macro scale reformers. Conventional Cu/ZnO catalyst that was prepared by co-precipitation method to give the highest coating quality was used. The reactor structure was made by bonding three layers of glass wafers. The internal structure of the wafer was fabricated by the wet-etching process that resulted in a high aspect ratio. The internal surface of the reactor was coated by catalyst and individual wafers were fusion-bonded to form the reactor structure. The internal volume of the microfabricated reactor was $0.3cm^3$ and the reactor produced exhaust gas with hydrogen concentration at 73%. The production rate of hydrogen was 4.16 ml/hr that could generate power of 350 mW in a typical PEM fuel cell.

Stand-Alone Type Single-Phase Fuel Cells Micro-Source with ac Voltage Compensation Capability (교류전압 보상 기능을 갖는 독립형 단상 연료전지 마이크로 소스)

  • Jung, Young-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This paper proposes a stand alone type single-phase fuel cells micro-source with a voltage sag compensator for compensating the ac output voltage variations (sag or swell) of micro-source. The proposed micro-source is consist of a PEM(polymer electrolyte membrane) fuel cells simulator, a full bridge de converter, a 60Hz PWM(pulse width modulation) VSI(voltage source inverter), and a voltage sag compensator. Voltage sag compensator is similar to the configuration of hybrid series active power filter, and it is directly connected to micro-source through the injection transformer. Compensation algorithm of a voltage sag compensator adopts a single phase p-q theory. Effectiveness of the proposed the system is verified by the PSIM(power electronics simulation tool) simulation in the steady state and transient state which the proposed system is able to simultaneously compensate the harmonic current and source voltage sag or swell.