• Title/Summary/Keyword: 마이크로 레이저형광여기 측정

Search Result 3, Processing Time 0.023 seconds

Micro-LIF Measurement in a Micro-channel Using an Micro Laser Light Sheet (마이크로 레이저 평면빔을 이용한 마이크로채널 내에서의 Micro-LIF 측정)

  • Yoon, Sang-Youl;Kim, Jae-Min;Kim, Su-Hun;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1540-1545
    • /
    • 2004
  • Measurement of concentration fields in a micro-channel is the crucial technology in the area of Lab-on-a-chip to be used for various bio-chemical applications. It is wel-known that the only possible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been made so far due to the limit of light illumination. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having 5 microns thickness by a micro focus laser line generator. Nile Blue A was used as fluorescent dye for LIF measurement. The laser sheet beam illuminates an exact plane of concentration measurement in the micro-channel to increase the signal to noise ratio and reduce the depth uncertainty considerably.

  • PDF

Application of Micro-Thin Laser sheet and Mixed Solvent for Micro-LIF Measurement in a Microchannel (마이크로 채널 내부의 Micro-LIF 측정을 위한 마이크로 레이저 평면빔과 혼합용매의 적용)

  • Yoon Sang Youl;Kim Jae Min;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.86-89
    • /
    • 2004
  • One most feasible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been successfully achieved so far due to various limitations in the light illumination and fluorescence signal detection. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having five(5) microns thickness by use of a micro focus laser line generator. The laser sheet beam illuminates an exact plane of concentration measurement field to increase the signal to noise ratio and considerably reduce the depth uncertainty. Nile Blue A was used as fluorescent dye for the present LIF measurement. The enhancement of the fluorescent intensity signals was performed by a solvent mixture of water $(95\%)$ and ethanol (EtOH)/methanol (MeOH) $(5\%)$ mixture. To reduce the rms errors resulted from the CCD electronic noise and other sources, an expansion of grid size was attempted from $1\times1$ to 3(3 or 5(5 pixel data windows and the pertinent signal-to-noise level has been noticeably increased accordingly.

  • PDF

Output characteristics of intracavity frequency doubling of laser-diode end-pumped Nd:S-VAP laser (반도체레이저 단면여기 Nd:S-VAP 레이저의 내부공진기 제2고조파 출력 특성)

  • 박준학
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.294-298
    • /
    • 2000
  • The output characteristics of intracavity frequency doubling of laser-diode end-pumped Nd:S-VAP laser were investigated. Nd:S-VAP is suitable for a microchip laser medium, which has a low threshold property because of a very high value of the stimulated emission cross-section and lifetime product. The threshold energy measured was 81 J.ll. The second harmonic output energy measured was $126\mu\textrm{J}$at a pump energy of $2\mu\textrm{J}$. We described for intracavity frequency doubling by using theoretical calculations. Q-switched second harmonic energy measured was $15\mu\textrm{J}$per pulse with a pulse-width of 26 ns. at a pump energy of 2 mJ and an $M^2$ of 1.47 represented a good beam quality. ality.

  • PDF