• Title/Summary/Keyword: 마이크로 드릴의 마모

Search Result 5, Processing Time 0.023 seconds

A Study on the PCB(Printed Circuit Board) Drilling by Air Bearing Spindle (공기 베어링 스핀들을 애용한 PCB 드릴링에 관한 연구)

  • Bae Myung-Il;Kim Sang-Jin;Kim Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.15-20
    • /
    • 2005
  • This paper describes the PCB drilling using an ultra high-speed air bearing spindle system and micro drill. For this research, we have developed the ultra high-speed air bearing spindle of 125,000 rpm and made an experiment for the application possibility in the PCB drilling. In order to estimate the drilling performance, we have investigated the size and damage of drilled hole, and the wear of drill at 90,000rpm. Results are as follows; we have confirmed the possibility in the PCB drilling of air bearing spindle. In case of micro-drilling PCB at $0.1mm\sim0.3mm$, the increase in the number of drilling has resulted in a bigger size of holes and also a bigger size of damage. It has been found that the wear of micro drill tends to concentrate in the main cutting edge.

A Study on the Wear Condition Diagnosis of Grinding Wheel in Micro Drill-bit Grinding System (마이크로 드릴비트 연마 시스템 연삭휠의 마모 진단 연구)

  • Kim, Min-Seop;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.77-85
    • /
    • 2022
  • In this study, to diagnose the grinding state of a micro drill bit, a sensor attachment location was selected through random vibration analysis of the grinding unit of the micro drill-bit grinding system. In addition, the vibration data generated during the drill bit grinding were collected from the grinding unit for the grinding wheels under the steady and worn conditions, and data feature extraction and dimension reduction were performed. The wear of the micro-drill-bit grinding wheel was diagnosed by applying KNN, a machine-learning algorithm. The classification model showed excellent performance, with an accuracy of 99.2%. The precision, recall and f1-score were higher than 99% in both the steady and wear conditions.

Micro-drilling of alumina green body with diamond abrasive drills (다이아몬드 입자 전착 드릴에 의한 알루미나 성형제의 미소구멍가공)

  • 이학구;방경근;김포진;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.926-931
    • /
    • 2002
  • Although ceramic plates with many micro-hales are used as MCP (Micro-channel plate) for electron amplification, catalytic converters, filters, electrical insulators and thermal conductors in integrated circuits, the drilling of micro-hales in the ceramics is difficult because of their low thermal conductivity, high hardness and brittleness. Therefore, in this work, the machining of ceramic green body fellowed by sintering of green body was employed fur fabricating ceramic plates with many micro-holes. The micro-drilling of alumina green body was performed with diamond abrasive WC drills, and the cutting force w.r.t. drilling times was measured for the determination of toot life. From the investigation of the wear of micro-drill tip w.r.t. drilling times, the wear mechanism of tip during micro-drilling of ceramic green body was suggested.

  • PDF

A Study on Thermal Behavior and Reliability Characteristics of PCBs with a Carbon CCL (카본 CCL이 적용된 PCB의 열거동 및 신뢰성 특성 연구)

  • Cho, Seunghyun;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, the Thermal behavior and reliability characteristics of carbon CCL (Copper Claded Layer), which can be used as the core of HDI (High Density Interconnection) PCB (Printed Circuit Board) are evaluated through experiments and numerical analysis using CAE (Computer Aided Engineering) software. For the characterization of the carbon CCL, it is compared with the conventional FR-4 core and Heavy Cu core. From research results, the deformation amount of the flexure strength of PCB is the highest with pitch grade carbon and thermal behavior of PCB is lowest as temperature increases. In addition, TC (Thermal Cycling), LLTS (Liquid-to-Liquid Thermal Shock) and Humidity tests have been applied in the PCB with carbon core and the reliability of PCB with carbon core is confirmed through reliability tests. Also, possibility of uneven surface of the via hole and wear of the drill bit due to the carbon fibers are analyzed. surface of the via hole is uniform, the surface of the drill bit is smooth. Therefore, it is proved that the carbon CCL has the drilling workability of the same level as conventional core material.

A Study on Heat Transfer Characteristics of PCBs with a Carbon CCL (카본 CCL에 의한 PCB의 열전달 특성 연구)

  • Cho, Seunghyun;Jang, Junyoung;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.37-46
    • /
    • 2015
  • In this paper, the heat transfer characteristics of PCB (Printed Circuit Board) with cabon CCL (Copper Claded Layer) were studied through experiments and numerical analysis to compare of PCBs with conventional the FR-4 core and heavy copper cores. For study, samples are producted with HDI (High Density Interconnection) PCB of mobile phone with variations of thickness of core materials and grades of carbon material to evaluate heat transfer characteristics respectively. From this research results, heat transfer characteristics of the carbon core was rather low than heavy copper, but better than FR-4 core. In addition, even though the carbon and heavy copper core contributed on the heat transfer characteristics as their thickness increases, FR-4 cores disturbed heat transfer characteristics as it's thickness increases. Therefore, carbon core is recommendable to improve the heat transfer characteristics of the PCB because heavy copper core has much disadvantages such as increasing of wear of drill, the weight of PCB, and manufacturing cost by additional insulation materials for electrical insulation.