• Title/Summary/Keyword: 마이크로 가공

Search Result 689, Processing Time 0.03 seconds

Manufacturing Technology of Lenticular Lens Mold by Shaping (세이핑에 의한 렌티큘러 렌즈 금형 가공)

  • Je T. J.;Choi D. S.;Lee E. S.;Shim Y. S.;Kim E. Z.;Na K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.249-254
    • /
    • 2004
  • 광의 효율적 사용을 위해 표면에 마이크로 그루브가 새겨진 고성능 광학 부품의 개발이 활발하고, 이들 부품의 다량 생산을 위한 초정밀 금형제조기술이 각광을 받고 있다. 최근의 초정밀 미세 기계가공의 경우 간단한 공정으로 이러한 마이크로 그루브 금형을 제작할 수 있다. 특히 조명각 변조용 렌티큘러 렌즈와 같이 실린더형 그루브 금형의 경우에는 기존의 Lithography, MEMS, LIGA 등 광 에너지를 이용한 다른 제조방법들에서는 가공하기 어려운 점이 있으나, 기계가공에서는 쉽게 제작가능한 장점이 있다. 본 연구에서는 이러한 미세기계가공기술의 장점을 활용하여 U 형 마이크로 그루브를 가진 Lenticular 렌즈용 금형을 가공하고자 하였다. 가공에는 3 축 구동의 초정밀 미세 복합가공기와 단결정 천연 다이아몬드공구가 사용되었고, 가공방식은 마이크로 세이핑 공정을 적용하였으며, 가공 금형 재료에는 Brass와 무전해 Nickel이 사용되었다. 실험을 통하여 금형가공시의 절삭력, 칩 형상, 가공표면 등의 분석이 수행되었으며 이를 기반으로 여러 가지 가공문제점을 해결하고, 최종적으로 양호한 렌티큘러렌즈용 금형을 가공하였다.

  • PDF

Silicon Micromachining Technology and Industrial MEMS Applications (실리콘 마이크로머시닝 기술과 산업용 MEMS)

  • 조영호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.52-58
    • /
    • 2000
  • 최근 첨단 미세가공기술로 주목을 받고 있는 실리콘 마이크로머시닝 기술과 이를 기반으로 한 산업용 MEMS 개발현황을 소개한다. 전반부에서는 마이크로머시닝 기술의 종류를 소개하고 각각의 기술에 대해 기술근원, 미세가공원리와 기본 가공공정을 간략히 요약한 후 기전 집적형태의 마이크로머신과의 연계성을 고려한 시스템적인 측면에서의 기술특성을 상호 비교한다. 또한 가공의 양산성, 재현성, 조립성 측면에서 마이크로머시닝의 가공성을 조명함과 동시에 향후 발전방향을 전망한다.(중략)

  • PDF

미세 변위 측정기 개발에 관한 연구

  • 김대현;최재원;최경현;이석희;김승수;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.124-124
    • /
    • 2004
  • 최근 MEMS공학의 발전으로 미소 가공물과 그 미소 가공물을 가공하는 공작기계의 발전이 두드러지고 있다. 마이크로 성형기는 이러한 미소 가공물을 만드는 공작기계들 중의 하나이다. 마이크로 성형기(micro former)는 마이크로 홀(micro holl)을 만드는 성형기로써 크랭크 축의 회전에 의한 펀치의 직선 운동으로 마이크로 홀을 뚫는 성형기이다. 마이크로 홀을 성형할 때에는 상하, 좌우의 미세한 변위가 생길 수 있다.(중략)

  • PDF

Micrimachining Technologies of MEMS (MEMS에서의 마이크로 가공기술)

  • 김창진
    • Journal of the KSME
    • /
    • v.33 no.6
    • /
    • pp.499-514
    • /
    • 1993
  • 이 MEMS연구는 상당히 넓은 분야를 포함하나, 그 핵심은 바로 마이크로가공 기 술(micromachining technology)에 있다. (막연히 작은 것이 아닌 마이크로미터 단위의 가공이라는 점을 살리기 위해, "마이크로" 가공이라 부르겠다.) 이 글에서는 우선 MEMS란 무엇인가에 대해 언급한 후, MEMS에 있어서의 마이크로가공(micromachining)이 어떤 것인지를 소개, 설명함에 주력한다. 마이크로가공 기본개념의 전달에 있어서는, 처음 대하는 이들의 이해를 돕기위해 되 도록 인용을 줄이고 핵심개념만 담아 최대한 단순화시켜 설명하였다. 이러한 핵심 개념을 바탕 으로하여 설명되는, 뒤 따르는 실제 예로는 기계공학적으로 관련이 있어 보이는 몇 가지를 인 용하였다.지를 인 용하였다.

  • PDF

마이크로 선반에서의 절삭성 평가

  • 김재건;정종운;고태조;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.256-256
    • /
    • 2004
  • Micro/Meso 기계적 가공은 기존 MEMS 공정에서 제작할 수 없었던 높은 세장비(aspect ratio)를 가지는 제품을 가공할 수 있을 뿐만 아니라 보다 높은 가공 정밀도를 획득할 수 있다. 따라서, 미소 부품에 대한 마이크로/매소 단위의 미세 절삭 가공을 위해서는 공간적 측면과 에너지 소비, 정밀도 측면에서 효율적인 시스템을 구성하기 위해서 마이크로 머시닝 전용 기계가 요구된다. 이에 본 연구에서는 '마이크로 팩토리' 의 기본 공작기계인 마이크로 선반을 개발하여 초정밀 미소 절삭에 대한 연구를 진행 중에 있다.(중략)

  • PDF

Machining characteristics of micro end-mill using high revolution (고속회전을 이용한 마이크로 엔드밀의 가공특성)

  • Kim, Kisoo;Kim, Sangjin;Cho, Byoungmoo;Kim, Hyeungchul
    • 대한공업교육학회지
    • /
    • v.31 no.2
    • /
    • pp.350-363
    • /
    • 2006
  • Recently, the micro end-milling processing is demanded the high-precise technique with good surface roughness and rapid time in milli-structure parts, micro machine parts and molding industry. The cutting conditions of micro end-milling has an effect on surface roughness of cutting surface. Therefore this study was carried out to cut stainless steel using high revolution air bearing spindle and micro end-mill and analyze the cutting condition to get the optimum surface roughness by design of experiment. From this study, surface roughness have an much effect according to priority on depth of cut, revolution of spindle and feed.

Micro Metal Powder Injection Molding Technology (마이크로 금속분말사출성형 기술)

  • 김순욱;류성수;백응률
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.179-185
    • /
    • 2004
  • 통상적인 금속분말의 성형은 분말야금 공정으로 이루어지기 때문에 복잡한 형상의 부품을 구현하는 데는 제약이 있다. 하지만, 1970년대 후반 이래 새로운 금속분말의 성형기술로 크게 각광을 받으며 연구되고 있는 금속분말사출성형(Metal Powder Injection Molding, MIM) 기술을 이용하면 다양한 형태의 부품을 성형할 수 있다 최근에는 이러한 MIM 기술을 이용하여 다양한 산업분야에 응용될 수 있는 마이크로 부품을 제조하고자 하는 연구개발이 주목받고 있다./sup 1)/ 현재까지는 마이크로 부품을 제조하는 원천기술이 반도체 공정기술이나 마이크로 기계가공기술에 크게 의존하고 있다./sup 2,3)/ 특히, 경제적 효용성이라는 관점에서 수 마이크로 이하의 극미세 구조물은 반도체 공정기술을 이용하여 성형하는 것이 유리하며, 1㎜의 치수를 갖는 미세 구조물은 마이크로 기계가공기술로 제조하는 것이 적합하다(그림 1). 하지만, 수십 마이크로에서 수백 마이크로의 치수를 갖는 구조물 제조에 있어서 앞선 두 공정기술은 응용 재료의 종류와 복합한 형상의 대량생산에 한계가 있다. 비록 반도체 공정기술에서 박막 증착과 전기화학적 도금기술을 이용한 표면미세가공 기술에 의해 수십 마이크로 이내의 치수를 갖는 미세 구조물을 정밀하게 성형하지만,/sup 4,5,)/ 수백 마이크로 크기의 치수를 반도체공정기술로 구현하기는 곤란하다. 또한, 마이크로 기계가공기술도 높은 가공 정밀도를 유지하며 수백 마이크로 크기의 구조물을 가공할 수 있지만 복잡한 모양의 형태를 대량생산하기에는 적합하지 않다.

레이저를 이용한 마이크로 및 나노 가공

  • Jeong, Seong-Ho
    • Journal of the KSME
    • /
    • v.51 no.9
    • /
    • pp.33-39
    • /
    • 2011
  • 레이저 마이크로 및 나노 가공은 공기 중에서 고속으로 실행이 가능하여 산업적으로 응용이 가능한 거의 유일한 초미세가공기술로소 반도체, 전자, 마이크로유체소자 등과 같은 분야에 널리 응용되고 있고 기존 기술의 한계를 뛰어 넘는 새로운 기술을 창출하는 데 기여하고 있다.

  • PDF

제 1장. 연삭가공의 기초

  • Korea Optical Industry Association
    • The Optical Journal
    • /
    • s.105
    • /
    • pp.49-56
    • /
    • 2006
  • 한국광학기기협회에서는‘한·일 광산업 기술협력’을 보다 효율적으로 추진하기 위하여 해마다 일본 연수기관 및 기업에 대한 현장연수를 실시하고 있는 가운데, 올해는 처음으로 지난 8월에 일본정밀공학회(JSPE)에서 주최하는‘차세대 초정밀광학부품 나노가공기술연수’를 실시했다. 연수기관은 일본 센다이 소재의 동북대학(Tohoku University)으로 구리야가와 츠네모토 교수가 교육을 담당했다. 주요 연수 내용으로는 마이크로 광학부품가공/초정밀 비구면 렌즈 가공/전기점성유체를 이용한 비구면 렌즈 코아 연마/특수광학렌즈 SPDT 가공/초고속 가공/마이크로 AJM 가공/마이크로 초음파가공이며 본 고에서는 직접 연수에 참가 못한 독자들을 위해 연수내용을 번역 게재하고자 한다. 이달에는 제1장 연삭가공의 기초 게재를 시작으로 11월호에 이어서 나머지 2,3,4장 교육과정내용을 게재할 예정이다.

  • PDF

A Study of Micro-Channel Fabrication by Micro-Milling and Magnetic Abrasive Deburring (마이크로 밀링과 자기디버링을 적용한 마이크로 유동채널 가공)

  • Kwak, Tae-Kyung;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.899-904
    • /
    • 2011
  • This This study aims to verify burr formation and to remove the burrs in micro-channel fabrication using micro-machining tools. The machining processes are combined with micro-milling and magnetic abrasive deburring for AISI316 stainless steel. Depending on the micro-milling conditions that are applied, burrs are formed around the side walls. Magnetic abrasive deburring is used to remove these burrs. AISI316 stainless steel is a nonferrous material and its magnetic flux density, which is an important parameter for efficient magnetic abrasive deburring, is low. To enhance this magnetic flux density, we design and build a magnetic array table. The effect of removing burrs is evaluated via SEM and a surface tester.