• Title/Summary/Keyword: 마이크로어레이 유전자 발현

Search Result 116, Processing Time 0.026 seconds

Dimension Reduction in Time-series Gene Expression Data using incremental PCA (점진적 주성분 분석을 이용한 시계열 유전자 발현 데이터의 효율적인 차원 축소)

  • Kim, Sun-Hee;Kim, Man-Sun;Yang, Hyung-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.733-736
    • /
    • 2007
  • 최근 생명 공학 기술의 발달로 마이크로 단위의 실험이 가능해지고 하나의 칩상에 수 만개의 유전자들의 발현 양상을 보다 쉽게 관찰할 수 있게 되었다. DNA 칩 기술에 의해 얻어지는 마이크로어레이(microarray) 데이터는 세포나 조직 내의 유전자 발현도(expression level)를 측정한 것으로 질병 진단이나 유전자 기능 예측 등에 이용되고 있다. 본 논문에서는 대량의 시계열 마이크로어레이 데이터 분석을 위해 효율적으로 데이터의 차원을 판단하는 점진적 주성분 분석을 이용하여 데이터의 차원을 축소 한다. 제안된 방법은 실제 시계열 마이크로어레이 데이터인 yeast cell cycle 데이터에 적용되었고, 데이터 차원 축소에 대한 효율성을 검증하기 위해 클러스터링을 수행하였다. 그 결과 데이터를 축소하여 클러스터링을 수행한 경우 학습 성능이 향상 된 결과를 보였다.

Gene filtering based on fuzzy pattern matching for whole genome micro array data analysis (마이크로어레이 데이터의 게놈수준 분석을 위한 퍼지 패턴 매칭에 의한 유전자 필터링)

  • Lee, Sun-A;Lee, Keon-Myung;Lee, Seung-Joo;Kim, Wun-Jea;Kim, Yong-June;Bae, Suk-Cheol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.471-475
    • /
    • 2008
  • Microarray technology in biological science enables molecular level observations and analyses on the biological phenomina by allowing to measure the RNA expression profiles in cells. Microarray data analysis is applied in various purposes such as identifying significant genes which react to drug treatment, understanding the genome scale phenomina. In drug response experiments, the microarray-based gene expression analysis could provide meaningful information. It is sometimes needed to identify the genes which shows different expression behavior for treatment group and normal group each other. When the normal group shows the medium level expression, it is not easy to discriminate the group just by expression level comparison. This paper proposes a method which selects group-wise representative values for each gene and sets the value range of the groups in order to filter out the genes with specific pattern. It also shows some experiment results.

Screening and Clustering for Time-course Yeast Microarray Gene Expression Data using Gaussian Process Regression (효모 마이크로어레이 유전자 발현데이터에 대한 가우시안 과정 회귀를 이용한 유전자 선별 및 군집화)

  • Kim, Jaehee;Kim, Taehoun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.389-399
    • /
    • 2013
  • This article introduces Gaussian process regression and shows its application with time-course microarray gene expression data. Gene screening for yeast cell cycle microarray expression data is accomplished with a ratio of log marginal likelihood that uses Gaussian process regression with a squared exponential covariance kernel function. Gaussian process regression fitting with each gene is done and shown with the nine top ranking genes. With the screened data the Gaussian model-based clustering is done and its silhouette values are calculated for cluster validity.

Exploratory Analysis of Gene Expression Data Using Biplot (행렬도를 이용한 유전자발현자료의 탐색적 분석)

  • Park, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.355-369
    • /
    • 2005
  • Genome sequencing and microarray technology produce ever-increasing amounts of complex data that needs statistical analysis. Visualization is an effective analytic technique that exploits the ability of the human brain to process large amounts of data. In this study, biplot approach applied to microarray data to see the relationship between genes and samples. The supplementary data method to classify new sample to known category is suggested. The methods are validated by applying it to well known microarray data such as Golub et al.(1999), Alizadeh et al.(2000), Ross et al.(2000). The results are compared to the results of several clustering methods. Modified graph which combine partitioning method and biplot is also suggested.

Seed를 이용한 마이크로어레이 데이터 클러스터링과 유전자 온틀로지를 이용한 클러스터의 해석

  • 강은미;신미영;정호열;박선희;조환규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.244-246
    • /
    • 2004
  • 마이크로어레이 칩 실험을 통하여 대량으로 생산되는 유전자 발현 데이터는 여러 가지 클러스터링 방법을 적용하여 분석할 수 있으며, 생성된 클러스터들 또한 여러 가지 방법으로 해석 할 수 있다. 본 논문에서는 기존의 클러스터링 방법들을 응용한 seed클러스터링 방법을 제안하고 생물학적 온톨로지인 Gene Ontology를 기반으로 클러스터를 해석한다. 본 논문에서는 효과적인 유전자 발현 데이터 클러스터링 방법과 생물학적 지식을 바탕으로 클러스터를 해석, 평가하는 방법을 보여 준다.

  • PDF

Building a Classifier for Integrated Microarray Datasets through Two-Stage Approach (2 단계 접근법을 통한 통합 마이크로어레이 데이타의 분류기 생성)

  • Yoon, Young-Mi;Lee, Jong-Chan;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.46-58
    • /
    • 2007
  • Since microarray data acquire tens of thousands of gene expression values simultaneously, they could be very useful in identifying the phenotypes of diseases. However, the results of analyzing several microarray datasets which were independently carried out with the same biological objectives, could turn out to be different. One of the main reasons is attributable to the limited number of samples involved in one microarry experiment. In order to increase the classification accuracy, it is desirable to augment the sample size by integrating and maximizing the use of independently-conducted microarray datasets. In this paper, we propose a novel two-stage approach which firstly integrates individual microarray datasets to overcome the problem caused by limited number of samples, and identifies informative genes, secondly builds a classifier using only the informative genes. The classifier from large samples by integrating independent microarray datasets achieves high accuracy up to 24.19% increase as against other comparison methods, sensitivity, and specificity on independent test sample dataset.

Macroscopic Biclustering of Gene Expression Data (유전자 발현 데이터에 적용한 거시적인 바이클러스터링 기법)

  • Ahn, Jae-Gyoon;Yoon, Young-Mi;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.327-338
    • /
    • 2009
  • A microarray dataset is 2-dimensional dataset with a set of genes and a set of conditions. A bicluster is a subset of genes that show similar behavior within a subset of conditions. Genes that show similar behavior can be considered to have same cellular functions. Thus, biclustering algorithm is a useful tool to uncover groups of genes involved in the same cellular process and groups of conditions which take place in this process. We are proposing a polynomial time algorithm to identify functionally highly correlated biclusters. Our algorithm identifies 1) the gene set that has hidden patterns even if the level of noise is high, 2) the multiple, possibly overlapped, and diverse gene sets, 3) gene sets whose functional association is strongly high, and 4) deterministic biclustering results. We validated the level of functional association of our method, and compared with current methods using GO.

A Pattern Consistency Index for Detecting Heterogeneous Time Series in Clustering Time Course Gene Expression Data (시간경로 유전자 발현자료의 군집분석에서 이질적인 시계열의 탐지를 위한 패턴일치지수)

  • Son, Young-Sook;Baek, Jang-Sun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.371-379
    • /
    • 2005
  • In this paper, we propose a pattern consistency index for detecting heterogeneous time series that deviate from the representative pattern of each cluster in clustering time course gene expression data using the Pearson correlation coefficient. We examine its usefulness by applying this index to serum time course gene expression data from microarrays.

Development of a Gene's Functional Classifying System for a Microarray Data using a Gene Ontology (유전자 온톨로지를 이용한 마이크로어레이 데이터의 유전자 기능 분석 시스템의 개발)

  • Lee, Jong-Keun;Park, S.S.;Hong, D.W.;Yoon, J.H.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.246-251
    • /
    • 2006
  • 마이크로어레이 실험은 수 천에서 수 만개의 유전자 발현 결과를 동시에 측정할 수 있어 질병의 발현 형질 분류 등에 유용하게 이용되고 있다. 그러나 마이크로어레이 실험은 동일한 플랫폼의 실험이라 할지라도 환경 등에 따라 그 실험 결과에 차이가 나는 등 오차를 항상 포함하고 있다. 또한 마이크로어레이 실험은 아직 고가의 실험으로 분류되어 다수의 샘플에 대한 반복 실험 결과를 얻기 어려운 상황이다. 따라서 이종의 플랫폼, 데이터 포맷, 정규화 기법 등이 서로 다른 데이터를 효율적으로 통합하여 유용한 정보를 추출하는 새로운 방식의 개발이 필요하다. 본 논문은 이와 같은 문제를 해결하기 위한 기초 단계 연구 결과이다. 마이크로어레이 실험 데이터로부터 통계적 방법을 이용하여 유의(informative) 유전자를 추출하고 유전자 온톨로지(Gene Ontology : GO)와의 연계를 통하여 유전자 정보의 기능적 분류 결과를 사용자에게 제공하는 유전자 기능 분석 시스템의 설계 및 구현 방안을 보인다. 본 시스템의 실험방법에서는 3-Fold Filtering 기법을 통하여 발현 차가 큰 유전자를 추출하고, t-검정 기법에 의하여 이들 유전자를 순위화 하였으며, 이 중 상위 100개의 유전자를 유의 유전자로 추출하였다. 다음, 이 들 유의 유전자의 t-검정 값을 GO의 유전자 기능을 나타내는 해당 텀 (term)에 가중치로 부과하여 각 유전자들과 기능적으로 연관성이 높은 텀들을 추출한다. 또한 본 연구의 유효성을 검증하기 위하여 본 시스템에 의한 마이크로어레이 데이터 분석 결과를 전문가에 의한 유전자 기능 분석 결과와 비교한다.투명성 있는 서비스를 제공하고 높은 신뢰성과 안정성이 확보될 수 있도록 구성하고자 한다. Query 수행을 여러 서버로 분산처리하게 함으로써 성능에 대한 신뢰성을 향상 시킬 수 있는 Load Balancing System을 제안한다.할 때 가장 효과적인 라우팅 프로토콜이라고 할 수 있다.iRNA 상의 의존관계를 분석할 수 있었다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate

  • PDF

Fibrinogen mRNA Expression Up-Regulated in Follicular Cyst of Korean Cattle (한우 난포낭종에서 증가되는 섬유소원 유전자 발현)

  • Tak, Hyun-Min;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • Follicular cystic ovary (FCO) is one of the major causes of reproductive failure in cattle. Genetic alterations affect the function of diverse cells and/or tissues, which could be present in cystic ovaries. A microarray analysis was performed to screen differential gene expressions in follicular cystic follicles of cattle. In this study, we hypothesized that follicular cysts may be induced by changes in ion- and transporter-related gene expression. Microarray data showed that fibrinogen-gamma (FGG) and low density lipoprotein receptor-related protein 8 (LRP8) were up-regulated, while choline transporter-like protein 4 (SLC44A4), very long-chain acyl-CoA synthetase homolog 2 (SLC27A5), annexin 8 (ANXA8), and aquaporin 4 were down-regulated in follicular cystic follicles. A semi-quantitative RT-PCR was carried out to validate DEGs altered in follicular cystic follicles. Of six DEGs, three DEGs (FGG, SLC44A4, and aquaporin 4) showed a positive correlation between microarray and semi-quantitative PCR data. We focused on FGG, among three DEGs, which was highly up-regulated in follicular cystic follicles. The FGG mRNA was upregulated by 8.4-fold and by 1.7-fold in the bovine follicular cystic follicles as judged by microarray and RT-PCR analysis, respectively. However, there was no significant changes in the expression level of FGG protein in both follicular cystic follicles and granulosa cells isolated from follicular cystic follicles by Western blot analysis. Although this study does not reveal a positive correlation between the mRNA and protein level, FGG appears to be an important biomarker in the discrimination of follicular cyst from normal ovary.