• Title/Summary/Keyword: 마이크로스폿 분광타원계

Search Result 2, Processing Time 0.016 seconds

Development of a Microspot Spectroscopic Ellipsometer Compatible with Atomic Force Microscope (원자힘 현미경 융합형 마이크로스폿 분광타원계 개발)

  • In, Sun Ja;Lee, Min Ho;Cho, Sung Yong;Hong, Jun Seon;Baek, In Ho;Kwon, Yong Hyun;Yoon, Hee Kyu;Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.201-209
    • /
    • 2022
  • The previously developed microspot spectroscopic ellipsometer (SE) is upgraded to a microspot SE compatible with the atomic force microscope (AFM). The focusing optical system of the previous microspot SE is optimized to incorporate an AFM head. In addition, the rotating compensator ellipsometer in polarizer-sample-compensator-analyzer configuration is adopted in order to minimize the negative effects caused by beam wobble. This research leads to the derivation of the expressions needed to get spectro-ellipsometric constants despite the fact that the employed rotating compensator is far from the ideal achromatic quarter-wave plate. The spot size of the developed microspot SE is less than 20 ㎛ while the AFM head is mounted. It operates in the wavelength range of 190-850 nm and has a measurement accuracy of δΔ ≤ 0.05° and δΨ ≤ 0.02°, respectively. Fast measurement of ≤3 s/sp is realized by precisely synchronizing the azimuthal angle of a rotating compensator with the spectrograph. The microspot SE integrated with an AFM is expected to be useful in characterizing the structure and optical properties of finely patterned samples.

Optical Property of Super-RENS Optical Recording Ge2Sb2Te5 Thin Films at High Temperature (초해상 광기록 Ge2Sb2Te5 박막의 고온광물성 연구)

  • Li, Xue-Zhe;Choi, Joong-Kyu;Lee, Jae-Heun;Byun, Young-Sup;Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Soo-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.351-361
    • /
    • 2007
  • The samples composed of a GST thin film and the protective layers of $ZnS-SiO_2$ or $Al_2O_3$ coated on c-Si substrate were prepared by using the magnetron sputtering method. Samples of three different structures were prepared, that is, i) the GST single film on c-Si substrate, ii) the GST film sandwiched by the protective $ZnS-SiO_2$ layers on c-Si substrate, and iii) the GST film sandwiched by $Al_2O_3$ protective layers on c-Si substrate. The ellipsometric constants in the temperature range from room temperature to $700^{\circ}C$ were obtained by using the in-situ ellipsometer equipped with a conventional heating chamber. The measured ellipsometric constants show strong variations versus temperature. The variation of ellipsometric constants at the temperature region higher than $300^{\circ}C$ shows different behaviors as the ambient medium is changed from in air to in vacuum or the protective layers are changed from $ZnS-SiO_2$ to $Al_2O_3$. Since the long heating time of 1-2 hours is believed to be the origin of the high temperature variation of ellipsometric constants upon the heating environment and the protective layers, a PRAM (Phase-Change Random Access Memory) recorder is introduced to reduce the heating time drastically. By using the PRAM recorder, the GST samples are heated up to $700^{\circ}C$ decomposed preventing its partial evaporation or chemical reactions with adjacent protective layers. The surface image obtained by SEM and the surface micro-roughness verified by AFM also confirmed that samples prepared by the PRAM recorder have smoother surface than the samples prepared by using the conventional heater.