• 제목/요약/키워드: 마이크로러닝

검색결과 47건 처리시간 0.026초

디지털 마이크로 미러 시스템에서의 손끝 인식 알고리즘 (Finger Tip Recognition Algorithm in Digital Micromirror System)

  • 최종호
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.223-228
    • /
    • 2016
  • 미래 스마트 러닝을 목표로 디지털 마이크로 미러 시스템(DMS : Digital Micromirror System)이 제안되어 있다. 다양한 인터페이스를 제공하기 위해 소형 프로젝터에 CMOS 센서 모듈을 내장한 시스템이다. DMS에서의 인터페이스 제공의 기본은 프로젝터에서 투사된 영상에서 손끝을 인식하는 것이다. 그러나 프로젝트 환경에서 각종 객체의 인식률은 영상열화 요인으로 인해 매우 낮다. 따라서 본 논문에서는 프로젝트 환경에서 영상열화 요인의 영향을 최소화한 Retinex 변환과 IR 구조광을 이용한 손끝 인식 알고리즘을 제안하였다. 제안한 알고리즘의 유용성을 실험을 통해 검증한 결과, 손끝을 효율적으로 인식할 수 있음을 확인하였다. DMS에 적용할 경우 사용자 인터페이스가 강화될 수 있을 것으로 판단된다.

인공지능 반도체 및 패키징 기술 동향 (Artificial Intelligence Semiconductor and Packaging Technology Trend)

  • 김희주;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제30권3호
    • /
    • pp.11-19
    • /
    • 2023
  • 최근 Chat GPT와 같은 인공지능 (Artificial Intelligence, AI) 기술의 급격한 발전에 따라 AI 반도체의 중요성이 강조되고 있다. AI 기술은 빅데이터 처리, 딥 러닝, 알고리즘 등의 요구사항으로 인해 대용량 데이터를 빠르게 처리할 수 있는 능력을 필요로 한다. 그러나 AI 반도체는 대규모 데이터를 처리하는 과정에서 과도한 전력 소비와 데이터 병목현상 문제가 발생한다. 반도체 전공정의 초미세공정이 물리적 한계에 도달함에 따라, AI 반도체의 연산을 위한 최신 패키징 기술이 요구되는 추세이다. 본 고에서는 AI 반도체에 적용가능한 인터포저, TSV, 범핑, Chiplet, 하이브리드 본딩 패키징 기술에 대해서 기술하였다. 이러한 기술들은 AI 반도체의 전력 효율과 연산 속도를 향상시키는데 기여할 것으로 기대된다.

U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리 (Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach)

  • 서지우;한동석
    • 한국전산구조공학회논문집
    • /
    • 제36권5호
    • /
    • pp.323-330
    • /
    • 2023
  • PVA 섬유 보강 시멘트 복합체는 매우 복잡한 미세구조를 가지고 있으며, 재료의 거동을 정확히 평가하기 위해서는 미세구조 특성을 반영하여 실제 실험과 시너지효과를 내며 효율적인 재료 설계를 가능하게 하는 해석 모델의 개발이 중요하다. PVA 섬유 보강 시멘트 복합체의 역학적 성능은 PVA 섬유의 방향성에 큰 영향을 받는다. 그러나 마이크로-CT 이미지로부터 얻은 PVA 섬유의 회색조 값을 인접한 상과 구분하기 어려워, 섬유 분리 과정에 많은 시간이 소요된다. 본 연구에서는 섬유의 3차원 분포를 얻기 위하여 0.65㎛3의 복셀 크기를 가지는 마이크로-CT 이미지 촬영을 수행하였다. 학습에 사용될 학습 데이터를 생성하기 위해 히스토그램, 형상, 그리고 구배 기반 상 분리 방법을 적용하였다. 본 연구에서 제안된 U-net 모델을 활용하여 PVA 섬유 보강 시멘트 복합체의 마이크로- CT 이미지로부터 섬유를 분리하는 학습을 수행하였다. 훈련의 정확도를 높이기 위해 데이터 증강을 적용하였으며, 총 1024개의 이미지를 훈련 데이터로 사용하였다. 모델의 성능은 정확도, 정밀도, 재현율, F1 스코어를 평가하였으며, 학습된 모델의 섬유 분리 성능이 매우 높고 효율적이며, 다른 시편에도 적용될 수 있음을 확인하였다.

인공지능 딥러링 학습 플랫폼에 관한 선행연구 고찰 (A Review on Deep Learning Platform for Artificial Intelligence)

  • 진찬용;신성윤;남수태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.169-170
    • /
    • 2019
  • 인공지능이 글로벌 경쟁력 원천 기술로 부각되면서 정부도 자율주행차, 드론, 로봇 등 미래 신산업의 기반 기술이 되는 인공지능을 전략적으로 육성하고 있다. 국내 인공지능 연구 및 서비스는 네이버와 카카오를 중심으로 출시되었으나 해외에 비하면 규모나 수준이 미약한 편이다. 최근, 딥러닝 (deep learning)은 최근 음성인식과 영상인식을 비롯한 다양한 패턴인식 분야에서 혁신적인 성능을 기록하면서 많은 연구가 진행되고 있다. 그 뿐만 아니라 딥러닝은 초창기부터 산업계의 큰 관심을 끌어 구글이나 마이크로소프트, 삼성전자 등 글로벌 정보기술 회사에서 상용제품에 딥러닝 기술을 성공적으로 적용하고 있고 계속 연구개발을 진행하고 있어 대중매체에서도 관심을 가지고 주목하고 있다. 이러한 선행연구를 바탕으로 주목 받고 있는 인공지능에 대해 살펴보도록 하겠다.

  • PDF

머신러닝을 활용한 팔당호 유해남조 세포수 예측 (Prediction of harmful algal cell density in Lake Paldang using machine learning)

  • 변서현;이한규;김진휘;신재기;박용은
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.234-234
    • /
    • 2023
  • 유해 남조 대발생(Harmful Algal blooms, HABs)이 담수호에 발생하면 마이크로시스틴과 같은 독성물질과 맛·냄새 물질을 생성하여 상수원이용과 친수활동을 방해한다. 그래서 유해 남조 대발생 전 유해남조 세포수를 예측하여 선제적 대응하는 것은 중요하다. 따라서 본 연구는 머신러닝기반 Random Forest(RF)를 활용하여 팔당댐 앞의 유해남조 세포수를 예측하는 모델을 개발하고 성능을 평가하고자 한다. 모델 구축을 위해 2012년 4월부터 2021년 12월까지의 팔당호(삼봉리, 경안천) 및 남북한강(의암댐~이포보)권역의 조류, 수질, 수리/수문, 기상 자료를 수집하여 입력 및 출력 자료로 이용하였다. 수집된 데이터에는 다양한 입력변수들이 있어 남조 세포수 예측 성능 비교를 위한 전체 26개 변수 적용과 통계학적으로 상관관계가 높은 12개 변수 적용을 통해 모델을 구축하였다. 입력, 출력 자료로 이용한 유해남조 세포수는 로그변환된 값으로 사용하였으며 일반적인 조류 시료 채취기간이 7일이므로 7일 후를 예측하기 위한 모델을 구축하였다. 구축한 모델의 성능은 실측데이터와 예측데이터의 R2로 산출하여 평가하였다. 전체 26개 입력변수로 모델 구축 후 학습 및 검증 수행 결과 R2의 학습 0.803, 검증 0.729로 나타났고, 유해남조 세포수와 유의미한 상관관계를 보이는 12개 입력변수로 모델 구축 후 학습 및 검증 수행 R2은 학습 0.784, 검증 0.731로 나타났다. 두 모델의 성능을 살펴본 결과 입력변수 개수의 변화에 따른 성능차이는 크지 않은 것으로 나타났으며, 남조세포수 예측을 위한 모델로서 활용가능함을 알 수 있었다. 향후 연구에서는 Random Forest 외 다른 기계학습 모델들과 딥러닝 모델을 통해 남조세포수 예측 성능이 높은 모델을 구축해볼 필요성이 있다.

  • PDF

Unet-VGG16 모델을 활용한 순환골재 마이크로-CT 미세구조의 천연골재 분할 (Segmentation of Natural Fine Aggregates in Micro-CT Microstructures of Recycled Aggregates Using Unet-VGG16)

  • 홍성욱;문덕기;김세윤;한동석
    • 한국전산구조공학회논문집
    • /
    • 제37권2호
    • /
    • pp.143-149
    • /
    • 2024
  • 이미지 분석을 통한 재료의 상 구분은 재료의 미세구조 분석을 위해 필수적이다. 이미지 분석에 주로 사용되는 마이크로-CT 이미지는 대체로 재료를 구성하고 있는 상에 따라 회색조 값이 다르게 나타나므로 이미지의 회색조 값 비교를 통해 상을 구분한다. 순환골재의 고체상은 수화된 시멘트풀과 천연골재로 구분되는데, 시멘트풀과 천연골재는 CT이미지 상에서 유사한 회색조 분포를 보여 상을 구분하기 어렵다. 본 연구에서는 Unet-VGG16 네트워크를 활용하여 순환골재 CT 이미지로부터 천연골재를 분할하는 자동화 방법을 제안하였다. 딥러닝 네트워크를 활용하여 2차원 순환골재 CT 이미지로부터 천연골재 영역을 분할하는 방법과 이를 3차원으로 적층하여 3차원 천연골재 이미지를 얻는 방법을 제시하였다. 선별된 3차원 천연골재 이미지에서 각각의 골재 입자를 분할하기 위해 이미지 필터링을 사용하였다. 골재 영역 분할 성능을 정확도, 정밀도, 재현율 F1 스코어를 통해 검증하였다.

딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출 (Deriving adoption strategies of deep learning open source framework through case studies)

  • 최은주;이준영;한인구
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.27-65
    • /
    • 2020
  • 많은 정보통신기술 기업들은 자체적으로 개발한 인공지능 기술을 오픈소스로 공개하였다. 예를 들어, 구글의 TensorFlow, 페이스북의 PyTorch, 마이크로소프트의 CNTK 등 여러 기업들은 자신들의 인공지능 기술들을 공개하고 있다. 이처럼 대중에게 딥러닝 오픈소스 소프트웨어를 공개함으로써 개발자 커뮤니티와의 관계와 인공지능 생태계를 강화하고, 사용자들의 실험, 적용, 개선을 얻을 수 있다. 이에 따라 머신러닝 분야는 급속히 성장하고 있고, 개발자들 또한 여러가지 학습 알고리즘을 재생산하여 각 영역에 활용하고 있다. 하지만 오픈소스 소프트웨어에 대한 다양한 분석들이 이루어진 데 반해, 실제 산업현장에서 딥러닝 오픈소스 소프트웨어를 개발하거나 활용하는데 유용한 연구 결과는 미흡한 실정이다. 따라서 본 연구에서는 딥러닝 프레임워크 사례연구를 통해 해당 프레임워크의 도입 전략을 도출하고자 한다. 기술-조직-환경 프레임워크를 기반으로 기존의 오픈 소스 소프트웨어 도입과 관련된 연구들을 리뷰하고, 이를 바탕으로 두 기업의 성공 사례와 한 기업의 실패 사례를 포함한 총 3 가지 기업의 도입 사례 분석을 통해 딥러닝 프레임워크 도입을 위한 중요한 5가지 성공 요인을 도출하였다: 팀 내 개발자의 지식과 전문성, 하드웨어(GPU) 환경, 데이터 전사 협력 체계, 딥러닝 프레임워크 플랫폼, 딥러닝 프레임워크 도구 서비스. 그리고 도출한 성공 요인을 실현하기 위한 딥러닝 프레임워크의 단계적 도입 전략을 제안하였다: 프로젝트 문제 정의, 딥러닝 방법론이 적합한 기법인지 확인, 딥러닝 프레임워크가 적합한 도구인지 확인, 기업의 딥러닝 프레임워크 사용, 기업의 딥러닝 프레임워크 확산. 본 연구를 통해 각 산업과 사업의 니즈에 따라, 딥러닝 프레임워크를 개발하거나 활용하고자 하는 기업에게 전략적인 시사점을 제공할 수 있을 것이라 기대된다.

딥러닝 프레임워크의 비교: 티아노, 텐서플로, CNTK를 중심으로 (Comparison of Deep Learning Frameworks: About Theano, Tensorflow, and Cognitive Toolkit)

  • 정여진;안성만;양지헌;이재준
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.1-17
    • /
    • 2017
  • 딥러닝 프레임워크의 대표적인 기능으로는 '자동미분'과 'GPU의 활용' 등을 들 수 있다. 본 논문은 파이썬의 라이브러리 형태로 사용 가능한 프레임워크 중에서 구글의 텐서플로와 마이크로소프트의 CNTK, 그리고 텐서플로의 원조라고 할 수 있는 티아노를 비교하였다. 본문에서는 자동미분의 개념과 GPU의 활용형태를 간단히 설명하고, 그 다음에 logistic regression을 실행하는 예를 통하여 각 프레임워크의 문법을 알아본 뒤에, 마지막으로 대표적인 딥러닝 응용인 CNN의 예제를 실행시켜보고 코딩의 편의성과 실행속도 등을 확인해 보았다. 그 결과, 편의성의 관점에서 보면 티아노가 가장 코딩 하기가 어렵고, CNTK와 텐서플로는 많은 부분이 비슷하게 추상화 되어 있어서 코딩이 비슷하지만 가중치와 편향을 직접 정의하느냐의 여부에서 차이를 보였다. 그리고 각 프레임워크의 실행속도에 대한 평가는 '큰 차이는 없다'는 것이다. 텐서플로는 티아노에 비하여 속도가 느리다는 평가가 있어왔는데, 본 연구의 실험에 의하면, 비록 CNN 모형에 국한되었지만, 텐서플로가 아주 조금이지만 빠른 것으로 나타났다. CNTK의 경우에도, 비록 실험환경이 달랐지만, 실험환경의 차이에 의한 속도의 차이의 편차범위 이내에 있는 것으로 판단이 되었다. 본 연구에서는 세 종류의 딥러닝 프레임워크만을 살펴보았는데, 위키피디아에 따르면 딥러닝 프레임워크의 종류는 12가지가 있으며, 각 프레임워크의 특징을 15가지 속성으로 구분하여 차이를 특정하고 있다. 그 많은 속성 중에서 사용자의 입장에서 볼 때 중요한 속성은 어떤 언어(파이썬, C++, Java, 등)로 사용가능한지, 어떤 딥러닝 모형에 대한 라이브러리가 잘 구현되어 있는지 등일 것이다. 그리고 사용자가 대규모의 딥러닝 모형을 구축한다면, 다중 GPU 혹은 다중 서버를 지원하는지의 여부도 중요할 것이다. 또한 딥러닝 모형을 처음 학습하는 경우에는 사용설명서가 많은지 예제 프로그램이 많은지 여부도 중요한 기준이 될 것이다.

예비교사를 위한 캡스톤 디자인 방법 활용 인공지능 융합교육 프로그램이 인공지능 교수효능감에 미치는 영향 (Effects of AI Convergence Education Program for Pre-service Teachers using Capstone Design Methods on AI Teaching Efficacy)

  • 이소율;이은경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.717-718
    • /
    • 2022
  • 본 연구에서는 예비교사의 인공지능 융합교육 역량 강화를 위한 캡스톤 디자인 기법 활용 인공지능 융합교육 프로그램을 개발하고 효과를 검증하였다. 개발된 교육 프로그램은 예비교사들이 스크래치 프로그래밍과 머신러닝포키즈, 캡스톤 디자인의 이해를 바탕으로, 인공지능 활용 융합 수업을 위한 주제 선정, 수업 설계 및 개발 후, 마이크로티칭을 하고 동료 평가 및 피드백을 하도록 조직되었다. 이는 2022년 1학기 K대학의 교양 강좌를 수강하는 예비교사들에게 처치되었다. 그 결과, 실험 대상자들의 인공지능 교수효능감의 사전-사후 t-검정에서 통계적으로 유의한 효과가 있음을 확인되었다.

  • PDF

클라우드 플랫폼에서의 딥러닝 기반 웹 어플리케이션 서비스 성능 비교 분석 (Performance Comparison Analysis of Deep Learning-based Web Application Services on Cloud Platforms)

  • 김주찬;범정현;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.224-226
    • /
    • 2021
  • 최근 코로나바이러스감염증-19(COVID-19)가 확산됨에 따라 화상회의, 온라인 게임, 스트리밍 등과 같은 다양한 온라인 서비스들의 트래픽이 크게 증가하면서 원활한 서비스 제공을 위한 서버 자원 관리의 중요성이 강조되고 있다. 이에 따라 서버 자원을 전문적으로 관리해주는 클라우드 서비스의 수요도 증가하는 추세이다. 하지만 대다수의 국내 기업들은 성능의 불확실성, 보안, 정서적 이질감 등을 이유로 클라우드 서비스 도입에 어려움을 겪고 있다. 따라서 본 논문에서는 클라우드 서비스의 성능의 불확실성을 해소하기 위해 클라우드 시장 BIG3 기업(아마존, 마이크로소프트, 구글)의 클라우드 서비스의 성능을 비교하였다.