• Title/Summary/Keyword: 마이닝

Search Result 2,817, Processing Time 0.027 seconds

전자상거래마이닝을 위한 웹데이터베이스시스템의 설계 및 구현

  • 이현호;나민영
    • Proceedings of the CALSEC Conference
    • /
    • 1998.10a
    • /
    • pp.287-300
    • /
    • 1998
  • 인터넷 사용자의 폭발적인 증가와 더불어 웹을 이용한 전자상거래가 활성화되고 있다. 웹기반 전자상거래시스템은 웹데이터베이스를 이용하여 구축되는데 전자상거래 정보의 효과적인 분석을 위해 데이터마이닝기법이 요구되고 있다. 본 논문에서는 전자상거래 마이닝의 개념을 살펴보고 효과적인 전자상거래 데이터마이닝을 위한 웹데이터베이스시스템을 제안하고 그 프로토타입을 구현하였다. 본 논문에서 제안한 웹데이터베이스는 전자상거래 자체의 내용정보를 저장하는 구조화 데이터 DB와 전자상거래의 사용자 인터페이스를 저장하는 HTML 폼 DB로 나뉘어 전자상거래 자체의 내용정보 뿐 아니라 접속횟수, 접속시간, 원격접속지 등 사용자 인터페이스에서 추출할 수 있는 정보까지 마이닝 대상정보에 포함시켜 효율적인 마이닝환경을 제공할 수 있다.

  • PDF

Genetics-Based Machine Learning for Generating Classification Rule in Data Mining (데이터 마이닝의 분류 규칙 발견을 위한 유전자알고리즘 학습방법)

  • 김대희;박상호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.429-434
    • /
    • 2001
  • 데이터(data)치 홍수와 정보의 빈곤이라는 환경에 처한 지금, 정보기술을 이용하여 데이터를 여과하고, 분석하며, 결과를 해석하는 자동화 된 데이터 분석 방안에 높은 관심을 가지게 되었으며, 데이터 마이닝(Data Mining))은 이러한 요구를 충족시키는 정보기술의 활용방법이다. 특히 데이터 마이닝(Data Mining)의 분류(Classification) 방법은 중요한 분야가 되고 있다. 분류 작업의 핵심은 어떻게 적당한 결정규칙(decision rule)을 정의하느냐에 달려 있는데 이를 위해 학습능력을 가지고 있는 알고리즘이 필요하다. 본 논문에서는 유전자 알고리즘(Genetic Algorithm)을 기반으로 하는 강건한 학습방법을 제시했으며, 이러한 학습을 통해 데이터 마이닝(Data Mining)의 분류시스템을 제안하였다.

  • PDF

Fuzzy category based transaction analysis for web usage mining (웹 사용 마이닝을 위한 퍼지 카테고리 기반의 트랜잭션 분석 기법)

  • 이시헌;이지형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.341-344
    • /
    • 2004
  • 웹 사용 마이닝(Web usage mining)은 웹 로그 파일(web log file)이나 웹 사용 데이터(Web usage data)에서 의미 있는 정보를 찾아내는 연구 분야이다. 웹 사용 마이닝에서 일반적으로 많이 사용하는 웹 로그 파일은 사용자들이 참조한 페이지의 단순한 리스트들이다. 따라서 단순히 웹 로그 파일만을 이용하는 방법만으로는 사용자가 참조했던 페이지의 내용을 반영하여 분석하는데에는 한계가 있다. 이러한 점을 개선하고자 본 논문에서는 페이지 위주가 아닌 웹 페이지가 포함하고 있는 내용(아이템)을 고려하는 새로운 퍼지 카테고리 기반의 웹 사용 마이닝 기법을 제시한다. 또한 사용자를 잘 파악하기 위해서 시간에 따라 관심의 변화를 파악하는 방법을 제시한다.

  • PDF

A Data Mining using Data Information Technology (데이터정보기술을 이용한 데이터 마이닝)

  • Jeon, Seong-Hae;Lee, Seung-Ju;O, Gyeong-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.264-265
    • /
    • 2008
  • 문제의 정의부터 데이터의 조사, 측정, 수집, 전송, 분석, 지식의 창출, 그리고 최적의 의사결정 및 피드백에 이르는 전체 과정을 다루는 데이터기술은 2000년 전,후에 제안되었다. 아직 이에 대한 폭넓은 연구는 이루어지고 있지 못하지만 기업 비즈니스를 위한 CRM 등의 경영을 위한 효과적인 데이터 마이닝 방법론에 대한 개선을 위한 중요한 역할이 기대된다. 본 논문에서는 현재 연구되고 있는 데이터기술과 정보기술의 창조적인 융합을 제안하고 이를 통하여 효과적인 데이터 마이닝의 수행방안에 대하여 연구한다.

  • PDF

시퀀스 패턴 마이닝 기법을 적용한 침입탐지 시스템의 경보데이터 패턴분석

  • Shin, Moon-Sun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.451-454
    • /
    • 2010
  • 침입탐지란 컴퓨터와 네트워크 자원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입의 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 대용량의 데이터를 분석하여 의미 있는 정보를 추출하는 데이터 마이닝 기법을 적용하여 지능적이고 자동화된 탐지 및 경보데이터 패턴 분석에 이용할 수 있다. 본 논문에서는 경보데이터 패턴 분석을 위해 시퀀스패턴기법을 적용한 경보데이터 마이닝 엔진을 구축한다. 구현된 경보데이터 마이닝 시스템은 기존의 시퀀스 패턴 알고리즘인 PrefixSpan 알고리즘을 확장 구현하여 경보데이터의 빈발 경보시퀀스 분석과 빈발 공격시퀀스 분석에 활용할 수 있다.

  • PDF

The Development of Data Mining Solution based on Web (웹 기반의 데이터 마이닝 솔루션 개발에 대하여)

  • 구자용;박헌진;최대우
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.301-306
    • /
    • 2000
  • 최근 데이터 웨어하우징의 활발한 구축과 우수고객 확보를 위한 치열한 경쟁으로 데이터 마이닝은 많은 업체의 큰 관심을 끌고있다. 본 연구는 풍부한 알고리즘과 과학적 그래프를 제공하여 사용자로 하여금 최상의 데이터 마이닝 효과를 거둘 수 있도록 Statserver를 핵심 엔진으로 사용한 인터넷 기반의 데이터 마이닝 솔루션 개발에 관한 편이다

  • PDF

The Analysis Telecommunication Service MarKet with Data Mining (통신시장에서 마이터 마이닝 분석)

  • 장일동;위승민
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.1-3
    • /
    • 2001
  • 이 논문에서는 지식발견과 데이터 마이닝에 관한 전반적인 소개와 고객이탈에 관한 것이다. 데이터 마이닝이란 과거에 수집된 데이터로부터 반복적인 학습과정을 거쳐 데이터에 내재되어 있는 패턴을 찾아내는 모델링 기법이며 통신서비스시장에서 데이터 마이닝 활용으로 고객이탈방지 모델을 인공신경망을 통해 구축하였다. 통신서비스시장의 경쟁이 심화됨에 따라 통신서비스 제공 업체가 고통으로 겪는 어려움 중의 하나가 고객이탈률이다. 따라서 데이터베이스에서 보다 가치 있는 정보를 찾아내 고객 이탈고객 분류의 적중률에 관하여 논의하였다.

  • PDF

Regular Pattern Mining with Multiple Minimum Supports (다중 최소 임계치를 이용한 정규 패턴 마이닝)

  • Choi, Hyong-Gil;Lee, Sang-Jun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1061-1063
    • /
    • 2013
  • 기존의 많은 빈발 패턴 마이닝은 단일 최소 임계치를 전체 트랜잭션 데이터베이스의 각 아이템에 똑같이 적용하고 빈발 패턴을 마이닝해왔다. 단일 최소 임계치를 설정함으로써, 모든 아이템이 동일한 임계치가 적용되므로 레어 아이템 문제가 발생한다. 한편, 일정 주기마다 발생하는 정규 패턴이라고 한다. 실 세계에서는 빈발한 아이템 뿐만 아니라 주기적으로 발생하는 패턴정보의 필요성이 증가하고 있다. 본 논문은 레어 아이템 문제를 해결하는 빈발한 정규 패턴을 마이닝하는 기법을 제시한다.

An Application Model for Clustering in Water Sensor Data Mining (수질센서 데이터 마이닝을 위한 클러스터링 적용 모델)

  • Kweon, Daehyeon;Cho, Soosun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.29-30
    • /
    • 2009
  • 센서 데이터의 마이닝 기술은 의사결정을 위한 통합정보 및 예측정보를 제공하는 USN 지능형 미들웨어의 주요 구성 요소이다. 본 논문에서는 수질 센서 데이터 마이닝 시스템을 개발하기위해 대표적인 데이터 마이닝 기법인 클러스터링의 적용 모델을 소개한다. 적용 모델의 클러스터링을 통해 중간노드에서의 데이터 이상치 검출과 호스트에서의 시간대별 데이터 변화 검출이 가능하다.

Mining Quantitative Association Rules using Commercial Data Mining Tools (상용 데이타 마이닝 도구를 사용한 정량적 연관규칙 마이닝)

  • Kang, Gong-Mi;Moon, Yang-Sae;Choi, Hun-Young;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.97-111
    • /
    • 2008
  • Commercial data mining tools basically support binary attributes only in mining association rules, that is, they can mine binary association rules only. In general, however. transaction databases contain not only binary attributes but also quantitative attributes. Thus, in this paper we propose a systematic approach to mine quantitative association rules---association rules which contain quantitative attributes---using commercial mining tools. To achieve this goal, we first propose an overall working framework that mines quantitative association rules based on commercial mining tools. The proposed framework consists of two steps: 1) a pre-processing step which converts quantitative attributes into binary attributes and 2) a post-processing step which reconverts binary association rules into quantitative association rules. As the pre-processing step, we present the concept of domain partition, and based on the domain partition, we formally redefine the previous bipartition and multi-partition techniques, which are mean-based or median-based techniques for bipartition, and are equi-width or equi-depth techniques for multi-partition. These previous partition techniques, however, have the problem of not considering distribution characteristics of attribute values. To solve this problem, in this paper we propose an intuitive partition technique, named standard deviation minimization. In our standard deviation minimization, adjacent attributes are included in the same partition if the change of their standard deviations is small, but they are divided into different partitions if the change is large. We also propose the post-processing step that integrates binary association rules and reconverts them into the corresponding quantitative rules. Through extensive experiments, we argue that our framework works correctly, and we show that our standard deviation minimization is superior to other partition techniques. According to these results, we believe that our framework is practically applicable for naive users to mine quantitative association rules using commercial data mining tools.