• Title/Summary/Keyword: 마운팅 브라켓

Search Result 5, Processing Time 0.019 seconds

Strength of Pipe Type Door Impact Beam with Changed Bracket Mounting Method and TRP Application (브라켓 마운팅 방법 변경과 TRP 적용에 따른 강관형 도어 임팩트 빔 강도)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.379-385
    • /
    • 2016
  • Door impact beam plays a key role in minimizing the occupant injury within the side impacted vehicle through preventing intrusion of the impacting vehicle. Steel pipe type door impact beam has been widely adopted since it has simple structure and the overall strength is easily determined according to the pipe size. The brackets welded at pipe ends connect the door impact beam and the door panels by spot welds. In this study, first, the effect of pipe thickness, bracket thickness and door mounting stiffness was respectively analyzed. Next, application of the tailor rolled pipe was examined and several alterations of the bracket mounting method were considered. Application of tailor rolled pipes with superior bracket mounting method showed remarkable strength enhancement and weight reduction possibility in comparison with the current door impact beam.

Research on Improved Formability of High-Strength Steel Mounting Brackets and Springback Prediction (고강도강 마운팅브라켓의 성형성 향상 및 스프링백 예측에 관한 연구)

  • Lim, Kyu-seong;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.14-22
    • /
    • 2022
  • To reduce the weight of the car and ensure the safety of the driver while driving, the existing 440 MPa-class mounting bracket was treated at 590MPa to improve collision safety and secure the weight of the vehicle body. The following conclusions were drawn from the tensile test, forming analysis, and springback prediction. In the formability and springback analyses using FLD, it could be confirmed that bending was an essential process because the formability and flatness were much better when bending was added than when bending was not applied. Based on the research results, it was deduced that the mold design was necessary so that the molding was carried out at a strain rate of 20% or less for stable molding.

Structural Analysis of Engine Mounting Bracket (엔진 마운팅 브라켓의 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the configuration of engine mount. Maximum equivalent stress or deformation is shown at bracket or case respectively. As harmonic vibration analysis, the maximum displacement amplitude is happened at 4,000Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' or 'Saw tooth' becomes most stable. In case of 'Sample history' or 'Saw tooth' with the average stress of 4,200MPa or 0MPa and the amplitude stress of -3,000MPa or 7MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on engine mount by investigating prevention and durability against its damage.

Stiffness and Fatigue Strength Analysis of Fuel Cell Vehicle Body Frame (연료전지차량 차체프레임 강성 및 내구해석)

  • Choi, Bok-Lok;Kang, Sung-Jong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • Firstly, FEM model for the body frame of a fuel cell vehicle was built up and design optimization results based on different schemes were exhibited. One scheme was to minimize weight while maintaining the normal mode frequencies and the other was to increase the frequencies without weight change. Next, for a rear frame model, shape parameter study on collapse characteristics such as peak resistance load and absorbed energy was carried out. Also, the stiffness of frame mounting brackets was predicted using inertance calculation and the durability of those mounting brackets for vehicle system loads was evaluated. Finally, for a representative mounting model, the influence on durability due to thickness change was analyzed.

A Study on Reducing Vibration of Oil-Free Reciprocating Air Compressors (오일프리 왕복동식 공기압축기 진동저감을 위한 방안 연구)

  • Song, Min-Su;Park, Eun-Suk;Hwang, Sung-Wook;Oh, Seok-Jin;Ko, Hyung-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.656-662
    • /
    • 2011
  • Recently, rolling stock technology has rapidly developed. Nevertheless, ride quality and vibration vibration on vehicle still need more study. EMU to be operated on SMRT Line 7(SR001) extension section is applied to oil-free reciprocating air compressor considering maintainability and convenience of inspection. But reciprocating air compressor compresses the air by back-and-forth motion of piston, and spreads the vibration to surrounding structures by its force of inertia. Optimum design of mounting bracket is able to reduce the vibration. As a result, we analyzed the frequency spectrum on vibration upon value by measuring vibration during operation of air compressor. On this study, we comprehend the vibration transmission process of reciprocating air compressor and consider the measure for reducing vibration by minimizing propagation of vibration.

  • PDF