• Title/Summary/Keyword: 마르코프 모델

Search Result 243, Processing Time 0.031 seconds

Emotion recognition in speech using hidden Markov model (은닉 마르코프 모델을 이용한 음성에서의 감정인식)

  • 김성일;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.21-26
    • /
    • 2002
  • This paper presents the new approach of identifying human emotional states such as anger, happiness, normal, sadness, or surprise. This is accomplished by using discrete duration continuous hidden Markov models(DDCHMM). For this, the emotional feature parameters are first defined from input speech signals. In this study, we used prosodic parameters such as pitch signals, energy, and their each derivative, which were then trained by HMM for recognition. Speaker adapted emotional models based on maximum a posteriori(MAP) estimation were also considered for speaker adaptation. As results, the simulation performance showed that the recognition rates of vocal emotion gradually increased with an increase of adaptation sample number.

  • PDF

Modeling and Analysis of Multi-type Failures in Wireless Body Area Networks with Semi-Markov Model (무선 신체 망에서 세미-마르코프 모델을 이용한 다중 오류에 대한 모델링 및 분석)

  • Wang, Song;Chun, Seung-Man;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.867-875
    • /
    • 2009
  • The reliability of wireless body area networks is an important research issue since it may jeopardize the vital human life, unless managed properly. In this article, a new modeling and analysis of node misbehaviors in wireless body area networks is presented, in the presence of multi-type failures. First, the nodes are classified into types in accordance with routing capability. Then, the node behavior in the presence of failures such as energy exhaustion and/or malicious attacks has been modeled using a novel Semi-Markov process. The proposed model is very useful in analyzing reliability of WBANs in the presence of multi-type failures.

Improved Automatic Lipreading by Multiobjective Optimization of Hidden Markov Models (은닉 마르코프 모델의 다목적함수 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.53-60
    • /
    • 2008
  • This paper proposes a new multiobjective optimization method for discriminative training of hidden Markov models (HMMs) used as the recognizer for automatic lipreading. While the conventional Baum-Welch algorithm for training HMMs aims at maximizing the probability of the data of a class from the corresponding HMM, we define a new training criterion composed of two minimization objectives and develop a global optimization method of the criterion based on simulated annealing. The result of a speaker-dependent recognition experiment shows that the proposed method improves performance by the relative error reduction rate of about 8% in comparison to the Baum-Welch algorithm.

Forgery Detection Scheme Using Enhanced Markov Model and LBP Texture Operator in Low Quality Images (저품질 이미지에서 확장된 마르코프 모델과 LBP 텍스처 연산자를 이용한 위조 검출 기법)

  • Agarwal, Saurabh;Jung, Ki-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1171-1179
    • /
    • 2021
  • Image forensic is performed to check image limpidness. In this paper, a robust scheme is discussed to detect median filtering in low quality images. Detection of median filtering assists in overall image forensic. Improved spatial statistical features are extracted from the image to classify pristine and median filtered images. Image array data is rescaled to enhance the spatial statistical information. Features are extracted using Markov model on enhanced spatial statistics. Multiple difference arrays are considered in different directions for robust feature set. Further, texture operator features are combined to increase the detection accuracy and SVM binary classifier is applied to train the classification model. Experimental results are promising for images of low quality JPEG compression.

Failure Probability Calculation Method Using Kriging Metamodel-based Importance Sampling Method (크리깅 근사모델 기반의 중요도 추출법을 이용한 고장확률 계산 방안)

  • Lee, Seunggyu;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.381-389
    • /
    • 2017
  • The kernel density was determined based on sampling points obtained in a Markov chain simulation and was assumed to be an important sampling function. A Kriging metamodel was constructed in more detail in the vicinity of a limit state. The failure probability was calculated based on importance sampling, which was performed for the Kriging metamodel. A pre-existing method was modified to obtain more sampling points for a kernel density in the vicinity of a limit state. A stable numerical method was proposed to find a parameter of the kernel density. To assess the completeness of the Kriging metamodel, the possibility of changes in the calculated failure probability due to the uncertainty of the Kriging metamodel was calculated.

Off-line Character Modeling using HMM (HMM 기반의 오프라인 필기 모델)

  • Sin, Bong-Kee
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.337-340
    • /
    • 2000
  • 음성 인식 및 온라인 필기 인식기 모델로 널리 알려진 은닉 마르코프 모델(HMM)을 오프라인에 적용하려는 시도는 있었지만 아직까지 만족할 만한 성과는 찾아보기 어렵고 인식률도 신경망 등 다른 방법에 의한 시스템에 미치지 못하는 실정이다. 본 연구에서는 온라인 필기 모델 HMM을 오프라인 필기인식에 활용하는 방법 한 가지와 순수하게 오프라인 필기 모델로서 제안된 2D HMM을 기술한다. 두 방법 모두 기존의 HMM 모델링 틀에 기초를 두고 개발하였으며 다양한 국소 변형을 해석하기 위해 동적 계획법에 기반한 알고리즘을 응용하였다. 본 논문에서는 두 가지 독립적인 아이디어 제안에 의의를 두었으며 주요 아이디어만을 간략하게 기술하였다.

  • PDF

Gray-level Image Data Compression using adaptive Modeling and Arithmetic Code (적응 모델링과 산술부호에 의한 계조 영상 데이터 압축법)

  • 박지환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.12
    • /
    • pp.1494-1502
    • /
    • 1992
  • 이 논문에서는 디지털 영상 데이터의 가역 부호화 방법을 제안하였다. 정보원 모델을 위하여 인접 화소간의 차분을 이용한 차분모델과 마르코프 모델의 구성법을 보였다. 모델링에서 얻어지는 확률 구간의 변경을 이용한 다치 산술부호화의 고속화 알고리즘을 제시하였다. 제안방식의 성능을 계산량의 비교와 컴퓨터 시뮬레이션을 통하여 평가하였다. 그 결과 상태의 그룹화에 의한 차분모델이 기존의 여러방식에 비하여 적은 계산량으로 동등 이상의 평균부호 길이의 달성할 수 있어 효과적임을 알 수 있었다. 또한 제안한 고속화 방식은 차분모델에 적용이 용이하며 128계조를 갖는 영상에 있어서 평균 5배 이상의 고속효과를 얻었다.

  • PDF

Reliablilty Analysis of a Continuos Media Disk Array Under Repair Rate (결함복구율을 고려한 연속 매체 디스크 배열의 신뢰도 분석)

  • 오유영;김성수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.9-11
    • /
    • 1998
  • 본 논문에서는 '그룹화된 패리티를 갖는 소수 라운드 로빈({{{{ { PRP}_{gp } }}}}:Prime Round Robiin with Grouped Parties)' 방식에 대한 기존의 조합 모델을 이용한 신뢰도 분석 시에 문제가 됐던 결함복구율을 고려하지 못한 모델링에 대해서 미르코프 모델을 이용한 신뢰도 모델링을 바탕으로 결함복구율을 고려한 신뢰도를 계산한다. 또한 산출된 신뢰도를 근거로 반최적화된(semi-optimal) 패리트 그룹 나누기 알고리즘을 도출하고 동시에 두 개의 결함에 대한 분석을 수행한다. 마르코프 모델을 이용한 신뢰도 모델링을 통해서 결함발생율만을 고려한 경우에 신뢰도가 기존의 조합 모델의 신뢰도와 거의 일치하고 결함발생율과 결함복구율을 동시에 고려한 경우에 신뢰도가 결함발생율만을 고려했을 경우보다 더높다는 것을 보인다. 반최적화된 패리티 그룹 나누기 알고리즘을 사용할 경우에, 동시에 두 개의 결함에 대한 분석을 통해서 약 30% 이상의 경우에 대해서 저장된 패리티 정보를 이용한 복구가 가능하다.

  • PDF