• Title/Summary/Keyword: 마르코프 모델

Search Result 243, Processing Time 0.031 seconds

Comparison between Markov Model and Hidden Markov Model for Korean Part-of-Speech and Homograph Tagging (한국어 품사 및 동형이의어 태깅을 위한 마르코프 모델과 은닉 마르코프 모델의 비교)

  • Shin, Joon-Choul;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.152-155
    • /
    • 2013
  • 한국어 어절은 많은 동형이의어를 가지고 있기 때문에 주변 어절(또는 문맥)을 보지 않으면 중의성을 해결하기 어렵다. 이런 중의성을 해결하기 위해서 주변 어절 정보를 입력받아 통계적으로 의미를 선택하는 기계학습 알고리즘들이 많이 연구되었으며, 그 중에서 특히 은닉 마르코프 모델을 활용한 연구가 높은 성과를 거두었다. 일반적으로 마르코프 모델만을 기반으로 알고리즘을 구성할 경우 은닉 마르코프 모델 보다는 단순하기 때문에 빠르게 작동하지만 정확률이 낮다. 본 논문은 마르코프 모델을 기반으로 하면서, 부분적으로 은닉 마르코프 모델을 혼합한 알고리즘을 제안한다. 실험 결과 속도는 마르코프 모델과 유사하며, 정확률은 은닉 마르코프 모델에 근접한 것으로 나타났다.

  • PDF

Vehicle Segmentation Scheme Based on the Hidden Markov Model in Traffic Sequence (교통 영상에서 은닉 마르코프 모델을 이용한 차량 분할 기법)

  • Lee, Dae-Ho;Park, Young-Tae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.850-852
    • /
    • 2005
  • 본 논문에서는 교통 영상에서 실시간으로 차량을 검출하는 새로운 기법을 소개한다. 차량의 검출을 위하여 구배도의 방향 정보를 사용하며 차량 영역의 정확한 분할을 위하여 은닉 마르코프 모델을 사용한다. 구배도 방향정보를 이용하므로 그림자 영역의 영향을 줄일 수 있으며 은닉 마르코프 모델을 이용하므로 배경과 비슷한 차량과 근접한 차량의 분리가 가능하다. 따라서 저해상도의 교 통 영상에서 다양한 기상 조건, 그림자의 존재와 교통 상황에 강건한 검출 결과를 나타낸다.

  • PDF

An HMM Part-of-Speech Tagger for Korean Based on Wordphrase (어절구조를 반영한 은닉 마르코프 모텔을 이용한 한국어 품사태깅)

  • Shin, Jung-Ho;Han, Young-Seok;Park, Young-Chan;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.389-394
    • /
    • 1994
  • 말뭉치에 품사를 부여하는 일은 언어연구의 중요한 기초가 된다. 형태소 해석의 모호한 결과로부터 한 가지 품사를 선정하는 작업을 태깅이라고 한다. 한국어에서 은닉 마르코프 모델 (Hidden Markov Model)을 이용한 태깅은 형태소 관계만 흑은 어절관계만을 이용한 방법이 있어 왔다. 본 논문에서는 어절관계와 형태소관계를 동시에 은닉 마르코프 모델에 반영하여 태깅의 정확도를 높인 모델을 제시한다. 제안된 방법은 품사의 변별력은 뛰어나지만 은닉 마르코프 모델의 노드의 수가 커짐으로써 형태소만을 고려한 방법보다 더 많은 학습데이타를 필요로 한다. 실험적으로 본 논문의 방법이 기존의 방법보다 높은 정확성을 가지고 있음이 검증되었다.

  • PDF

Video-based fall detection algorithm combining simple threshold method and Hidden Markov Model (단순 임계치와 은닉마르코프 모델을 혼합한 영상 기반 낙상 알고리즘)

  • Park, Culho;Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2101-2108
    • /
    • 2014
  • Automatic fall-detection algorithms using video-data are proposed. Six types of fall-feature parameters are defined applying the optical flows extracted from differential images to principal component analysis(PCA). One fall-detection algorithm is the simple threshold method that a fall is detected when a fall-feature parameter is over a threshold, another is to use the HMM, and the other is to combine the simple threshold and HMM. Comparing the performances of three types of fall-detection algorithm, the algorithm combining the simple threshold and HMM requires less computational resources than HMM and exhibits a higher accuracy than the simple threshold method.

Character spotting using image-based stochastic models (이미지 기반 확률모델을 이용한 문자검출)

  • 김선규;신봉기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.484-486
    • /
    • 2001
  • 본 논문에서는 의사 2차원 은닉 마르코프 모델의 구조로 생성한 마르코프 체인형 확률모형에 의한 인쇄체문자 이미지의 모델링에 대해 논한다. 이미지 데이터에서 바로 모델을 실시간 생성하며 문자 인식 및 검출에 응용할 수 있다. 실험에 의하면, 이 방법을 통해 특정 낱말이 포함된 문장에서 숫자를 인식, 한글을 검출할 수 있음을 확인하였다.

  • PDF

A Study of Traffic Prediction Method Based on Hidden Markov Model (은닉 마르코프 모델 기반의 교통량 예측 기법 연구)

  • Kim, Min-Jae;You, Hee-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.347-348
    • /
    • 2014
  • 최근 급증하는 교통 혼잡으로 인해 시간적/물질적 손실이 크게 발생하고 있다. 이러한 교통난 해소는 시설투자만으로는 근본적인 해결책이 될 수 없다는 판단 하에 지난 수년간 보다 정확한 교통량을 예측하기 위해 시계열 기반의 다양한 교통량 예측 모델들이 개발 되어 왔다. 그러나 시계열 기반의 모델들은 회귀분석을 통해 과거 교통량을 분석하고 과거의 교통패턴이 미래에도 지속적으로 연장된다는 가정 하에 연구되었기 때문에 실시간으로 급변하는 불규칙한 교통 패턴에 대한 예측의 신뢰성을 떨어트린다. 또한 시계열 기반의 예측 기법은 어떠한 회귀분석 모델을 사용하는지에 따라 성능의 차이가 많이 나타나기 때문에 회귀분석 모델 선택이 중요하다. 이러한 제약을 극복하기 위해 본 논문에서는 은닉 마르코프 모델(Hidden Markov model)을 이용해 동적인 교통 패턴에 따라 현재 상황에 맞는 회귀분석 모델을 선택하는 신뢰도 높은 교통량 예측 시스템을 제안한다.

  • PDF

Analysis and Prediction Algorithms on the State of User's Action Using the Hidden Markov Model in a Ubiquitous Home Network System (유비쿼터스 홈 네트워크 시스템에서 은닉 마르코프 모델을 이용한 사용자 행동 상태 분석 및 예측 알고리즘)

  • Shin, Dong-Kyoo;Shin, Dong-Il;Hwang, Gu-Youn;Choi, Jin-Wook
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • This paper proposes an algorithm that predicts the state of user's next actions, exploiting the HMM (Hidden Markov Model) on user profile data stored in the ubiquitous home network. The HMM, recognizes patterns of sequential data, adequately represents the temporal property implicated in the data, and is a typical model that can infer information from the sequential data. The proposed algorithm uses the number of the user's action performed, the location and duration of the actions saved by "Activity Recognition System" as training data. An objective formulation for the user's interest in his action is proposed by giving weight on his action, and change on the state of his next action is predicted by obtaining the change on the weight according to the flow of time using the HMM. The proposed algorithm, helps constructing realistic ubiquitous home networks.

Generating Korean NER Corpus using Hidden Markov Model (은닉 마르코프 모델을 이용한 한국어 개체명 말뭉치 생성)

  • Kim, Jae-Kyun;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Nam-Goong, Young;Choi, Min-Seok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.357-361
    • /
    • 2019
  • 기계학습을 이용하여 개체명 인식을 수행하기 위해서는 많은 양의 개체명 말뭉치가 필요하다. 이를 위해 본 논문에서는 문장 자동 생성을 통해 개체명 표지가 부착된 말뭉치를 구축하는 방법을 제안한다. 기존의 한국어 문장 생성 연구들은 언어모델을 이용하여 문장을 생성하였다. 본 논문에서는 은닉 마르코프 모델을 이용하여 주어진 표지열에 기반 하여 문장을 생성하는 시스템을 제안한다. 제안하는 시스템을 활용하여 자동으로 개체명 표지가 부착된 3,286개의 새로운 문장을 생성할 수 있었다. 학습말뭉치 문장과 약 70%의 차이를 보이는 새로운 문장을 생성하였다.

  • PDF

Gait Recognition using Modified Motion Silhouette Image (개선된 움직임 실루엣 영상을 이용한 발걸음 인식에 관한 연구)

  • Hong Seong-Jun;Lee Hui-Seong;O Gyeong-Se;Kim Eun-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.49-52
    • /
    • 2006
  • 본 논문에서는 은닉 마르코프 모델을 바탕으로 하는 발걸음을 이용한 개인 식별 시스템을 제안한다. 개인의 발걸음은 연속적인 자세나 움직임의 집합으로 나타낼 수 있는데, 구조적으로 연속적인 움직임의 변화는 확률적인 특성을 가지고 있기 때문에 은닉 마르코프 모델을 이용하여 적절하게 모델링 할 수 있다. 개인의 발걸음은 N개의 이산적인 자세 간의 전이로 이루어졌다고 가정하였으며, 이를 계산하기 위해 MMSI라는 발걸음 특징 모델을 제안하였다. MMSI는 발걸음 인식에 중요한 역할을 하는 시공간적인 정보를 가지고 있는 그레이-스케일 영상이다. 실험 결과는 MMSI를 이용하여 은닉 마르코프 모델을 바탕으로 한 발걸음 인식 결과를 보여준다.

  • PDF

Improved Automatic Lipreading by Stochastic Optimization of Hidden Markov Models (은닉 마르코프 모델의 확률적 최적화를 통한 자동 독순의 성능 향상)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.523-530
    • /
    • 2007
  • This paper proposes a new stochastic optimization algorithm for hidden Markov models (HMMs) used as a recognizer of automatic lipreading. The proposed method combines a global stochastic optimization method, the simulated annealing technique, and the local optimization method, which produces fast convergence and good solution quality. We mathematically show that the proposed algorithm converges to the global optimum. Experimental results show that training HMMs by the method yields better lipreading performance compared to the conventional training methods based on local optimization.