• Title/Summary/Keyword: 마그마기원 백운모

Search Result 17, Processing Time 0.028 seconds

쥬라기 대전 화강암 시추코아의 암석 지화학 연구

  • 홍영국;홍세선
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.298-301
    • /
    • 2003
  • 한국지질자원연구원 내를 중심으로 유성일대에 분포하는 화강암은 대전지역을 관입한 화강암체의 일부로서 대부분 백운모를 함유한 복운모화강암으로 구성된다. 이 화강암은 주변에 분포하는 편상 화강섬록암이나 흑운모화강암에 비해 옥천층군의 잔류물을 거의 함유하지 않으며 암맥상의 폐그마타이트가 관입된다. 이 화강암은 중리질 내지 세립질이며 백운모가 흑운모보다 더 우세하거나 비슷하게 산축되는 등 다른 암석류에 비해 백운모를 다량 함유하는 것이 특징이다. (중략)

  • PDF

Petrological Characteristics of Two-Mica Granites : Examples from Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas (복운모 화강암의 암석화학적 특징 : 청산, 인제-홍천, 영주 및 남원지역의 예)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.210-225
    • /
    • 1997
  • From their general natures of peraluminous, S-type and ilmenite-series granites, two-mica granites in the Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas were originated from crust-derived granitic magma and solidified under reducing condition. Each two-mica granite in Inje-Hongcheon and Namwon districts was differentiated from the the residual magma of porphyric biotite granite and high Ti/Mg biotite granite, respectively. The genetic relationships between two-mica granite and porphyritic biotite granite in Chenongsan district and between two-mica granite and biotite granodiorite in Yeongju district are ambiguous. In Namwon district granitic magmas were water-saturated and possible water solubilities in magmas were more than 5.8wt.%. In Yeongju district two-mica granitic magma was nearly water-saturated and showed possible water solubilities between 2.4~5.8wt.%. Two-mica granitic magmas in Cheongsan and Inje-Hongcheon districts were water-undersaturated. Pressure-dependent minimum melt compositions (0.5~2kb) and petrographic textures of two-mica granites in Inje-Hongcheon and Yeongju districts represent that the granites intruded and solidified at shallow level, whereas those in Cheongsan and Namwon districts exhibit relatively deeper level of granitic intrusion (2-3kb). The intersection of granite-solidus/muscovite stability indicates that magmatic primary muscovite can be crystallized from the water-saturated magma above 1.6kb (ca. 6km), but below the pressure muscovite can be formed by the subsolidus reaction. On the other hand, more pressure would be necessary for the crystallization of primary muscovite from the water-undersaturated magma. This pressure condition can explain the occurrence of primary and secondary muscovites from the two-mica granites in the areas considered. The experimental muscovite stability must be cautious of the application to examine the origin of muscovite. The muscovite stability can move toward high temperature field with adding of Ti, Fe and Mg components to the octahedral site of pure muscovite end member.

  • PDF

Geological Review on the Distribution and Source of Uraniferous Grounwater in South Korea (국내 고함량 우라늄 지하수의 분포와 기원에 관한 지질학적 고찰)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.593-603
    • /
    • 2018
  • The most of groundwater with high U-concentration occur in the Jurassic granite of Gyeonggi massif and Ogcheon belt, and some of them occur in the Cretaceous granite of Ogcheon belt. On the contrary, they do not occur in the Jurassic granite of Yeongnam massif and the Cretaceou granite of Gyeongsang basin. The Jurassic and Cretacous granite, the host rock of high U-groundwater, were resulted from parental magma with high ratio of crustal material and highly differentiated product of fractional crystalization. These petrogenetic characteristics explain the geological evidence for preferential distribution of uraniferous groundwater in each host rock. It were reported recently that high U-content, low Th/U ratio and soluble mineral occurrence of uraninite in the two-mica granite of Daejeon area which have characteristics of S-type peraluminous and highly differntiated product. It is the mineralogical-geochemical evidences supporting the fact that the two-mica granite is the effective source of uranium in groundwater. The biotite granite and two-mica granite of Jurassic age were reported as biotite granite in many geological map even though two-mica granite occur locally. This fact suggest that the influence of two-mica granite can not be ignored in uraniferous groundwater hosted by biotite granite.

Mineralogy, Geochemistry, and Evolution of the Mn-Fe Phosphate Minerals within the Pegmatite in Cheolwon, Gyeonggi Massif (경기육괴 철원지역 페그마타이트 내 망간-철 인산염광물의 광물-지화학적 특징 및 진화과정)

  • Kim, Gyoo Bo;Choi, Seon Gyu;Seo, Jieun;Kim, Chang Seong;Kim, Jiwon;Koo, Minho
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.181-193
    • /
    • 2017
  • Mn-Fe phosphate mineral complexes included within the pegmatite are observed at Jurassic Cheolwon two-mica granite in Gyeonggi Massif, South Korea. The genetic evolution between the Cheolwon two-mica granite and pegmatite, and various trend of Mn-Fe phosphate minerals is made by later magmatic, hydrothermal, and weathering process based on mineralogical, geochemical analysis. The Cheolwon two-mica granite is identified as S-type granite, considering its chemical composition (metaluminous ~ peraluminous), post-collisional environment, low magnetic susceptibility, and existence of biotite and muscovite. The K-Ar age (ca. 153 Ma) of pegmatite is well coincident with age of the Cheolwon two-mica granite ($151{\pm}4Ma$). It indicates that these two rocks are originated from the same magma. Pegmatite indicates the LCT geochemical signature, and was classified as muscovite-rare element class / Li subclass / beryl type / beryl-columbite-phosphate subtype pegmatite. The triplite $\{(Fe^{2+}{_{0.4}},Mn_{1.6})(PO_4)(F_{0.9})\}$ is dominant phosphates in later magmatic stage which partly altered to leucophosphite $\{KFe^{3+}{_2}(PO_4)_2OH{\cdot}2H_2O\}$ and jahnsite $\{(Fe^{3+}{_{0.7}},Mn_{2.3})(PO_4)_2OH{\cdot}4H_2O\}$ by hydrothermal alteration. In particular, near fractures, the triplite has been separatelty replaced by the phosphosiderite ($Fe^{3+}PO_4{\cdot}2H_2O$) and Mn-oxide minerals during weathering stage.

Occurrence of the Nb-Ta Ore Bodies in Pegmatites, Mujoo (무주 페그마타이트 내 Nb-Ta 광화대의 산출상태)

  • Kang, Min-Woo;Kim, Ji-Hyun;Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.133-143
    • /
    • 2011
  • In Mujoo area, the granitic pegmatites are developed in the granitic gneiss complex with Jurassic gneissic granites, where Nb-Ta mineralization were reported. Pegmatites are mainly composed of large crystals of quartz, feldspars of end-member orthoclase and albite, and muscovite. Nb-Ta minerals in study area are columbite (Nb > Ta) in composition. Chemistry of muscovites shows post-magmatic in origin and they are closely related with columbite. Large columbite, in pegmatites occurred with quartz and feldspars, while microcrystalline columbite is associated with muscovite. The Nb contents in large columbite are relatively higher than those in microcrystalline ones. Two pegmatites, 4~15 m in width and 120 m, 250 m in extension respective1y, are developed. Five drilling cores with total 600 m in length are finally obtained and revealed no possible potential for economic rare metals of Na-Ta deposits.

Origin and Evolution of Leucogranite of NE Yeongnam Massif from Samcheok Area, Korea (삼척지역 북동 영남 육괴에 분포하는 우백질 화강암의 기원 및 진화)

  • Cheong, Won-Seok;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.16-35
    • /
    • 2008
  • We study metamorphism of metasedimetary rocks and origin and evolution of leucogranite form Samcheok area, northeastern Yeongnam massif, South Korea. Metamorphic rocks in this area are composed of metasedimentary migmatite, biotite granitic gneiss and leucogranite. Metasedimentary rocks, which refer to major element feature of siliclastic sediment, are divided into two metamorphic zones based on mineral assemblages, garnet and sillimanite zones. According to petrogenetic grid of mineral assemblages, metamorhpic P-T conditions are $740{\sim}800^{\circ}C$ at $4.8{\sim}5.8\;kbar$ in the garnet zone and $640-760^{\circ}C$ at 2.5-4.5kbar in sillimanite zone. The leucogranite (Imwon leucogranite) is peraluminous granite which has high alumina index (A/CNK=1.31-1.93) and positive discriminant factor value (DF > 0). Thus, leucogranite is S-type granite generated from metasedimentary rocks. Major and trace element diagram ($R_1-R_2$ diagram and Rb vs. Y+Nb etc.) show collisional environment such as syn-collisional or volcanic arc granite. Because Rb/sr ratio (1.8-22.9) of leucogranites is higher than Sr/Ba ratio (0.21-0.79), leucogranite would be derived from muscovite dehydrate melting in metasedimentary rocks. Leucogranites have lower concentration of LREE and Eu and similar that of HREE relative to metasedimentary rocks. To examine difference of REEs between leucogranites and metasedimentary rocks, we perform modeling using volume percentage of a leucogranite and a metasedimenatry rock from study area and REE data of minerals from rhyolite (Nash and Crecraft, 1985) and melanosome of migmatite (Bea et al., 1994). Resultants of modeling indicate that LREE and HREE are controlled by monazites and garnet, respectively, although zircon is estimated HREE dominant in some leucogranite without garnet. Because there are many inclusions of accessary phases such as monazite and zircon in biotites from metasedimentary rocks. leucogranitic magma was mainly derived from muscovite-breakdown in metasedimenary rocks. Leucogranites can be subdivided into two types in compliance with Eu anomaly of chondrite nomalized REE pattern; the one of negative Eu anomaly is type I and the other is type II. Leucogranites have lower Eu concetnrations than that of metasedimenary rocks and similar that of both type. REE modeling suggest that this difference of Eu value is due to that of components of feldspars in both leucogranite and metasedimentary rock. The tendency of major ($K_2O$ and $Na_2O$) and face elements (Eu, Rb, Sr and Ba) of leucogranites also indicate that source magma of these two types was developed by anatexis experienced strong fractionation of alkali-feldspar. Conclusionally, leucogranites in this area are products of melts which was generated by muscovite-breakdown of metasedimenary rock in environment of continetal collision during high temperature/pressure metamorphism and then was fractionated and crystallized after extraction from source rock.

Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area (청산 일대에 분포하는 화강암류의 광물조성과 주성분원소 지구화학)

  • 사공희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.185-209
    • /
    • 1997
  • Granitic rocks in the Cheongsan area cosist of three plutons-Baegrog granodiorite, Cheongsan porphyritic granite, and two mica granite. Amphilboles from the Baegrog granodiorite belong to the calcic amphilbole group and show compositional variations from magnesio-hornblende in the core to actinolitic hornblende in the rim. Biotites from the three granites represent intermediate compositions between phlogopite and annite. Muscovites from the two mica granite are considered to be primary muscovite in terms of the occurrence and mineral chemistry. Each granitic rock reveals systematic variation of major oxide contents with $SiO_2$. Major oxide variation trends of the Baegrog granodiorite are fairly different from those of Cheongsan porphyritic granite and two mica granite. The latter two granitic rocks are also different with each other in variation trends for some oxides. Thus three granitic rocks in the Cheongsan area were solidifield from the independent magmas of chemically different, heterogeneous origin. The granitic rocks in the area show calc-alkaline nature. The whole rock geochemistry shows that the Baegrog granodiorite and Cheongsan porphyritic granite belong to metaluminous, I-type granite, whereas the two mica granite to peraluminous, I/S-type granite. The opaque mineral contents and magnetic susceptibility represent that the granitic rocks in the area are ilmenite-series granite, indicating that each magma was solidified under relatively reducing environment. The tectonic environment of the granitic activity in the area seems to have been active continental margin. Alkali feldspar megacryst in the Cheongsan porphyritic granite is considered to be magmatic, judging from the crystal size, shape, arrangement, and distribution pattern of inclusions. The petro-graphical characteristics of the Cheongsan porphyritic granite can be explained by two stage crystallization. Under the smaller degree of undercooling the alkali feldspar megacrysts rapidly grew owing to slow rate of nucleation and fast growth rate. At the larger degree of undercooling the nucleation rate and density drastically increased and the small crystals of the matrix were formed.

  • PDF

Mineral Compositions of Granitic Rocks in the Yeongkwang-Naju Area (영광-나주지역에 분포하는 화강암류의 광물성분에 대한 연구)

  • Park, Jae-Bong;Kim, Yong-Jun
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.535-549
    • /
    • 2012
  • Main aspect of this study are to clarify mineral compositions on granites in Youngkwang-Naju area. These granites are is divided into four rock facies based on the geologic ages, mineralogical composition and chemical constituents, and texture : hornblende-biotite granodiorite, biotite granite, porphyritic granite and two mica granite. These granites constitude an igneous complex formed by a series of differentiation from cogenetic magma. In compressive stress field between the Ogcheon folded belt and the Youngnam massif, the foliated and undeformed granites had formed owing to heterogeneous distribution of stress. The geochemical data of study area indicate magma of these rocks would had been generated by melting in lower and middle crust. The major minerals of granitic rocks in study area are plagioclase, biotite, muscovite and hornblende. Plagioclase range in composition from oligoclase ($An_{19.3-27.7}$) to andesine ($An_{28.4-31}$), and shows normal zoning patterns, This uniformed composition indicated slow crystallization, and it is obvious that the growth of these crystal occurred before final consolidation of the magma. The Mg content of biotite are increases with increasing of $f_{O2}$ and grade of differentiation, changing from phlogopite to siderophyllite. Its $Al^{iv}$/$Al^{total}$ ratios are propertional to bulk rock alumina content. Muscovite is primary in origin with high content of $TiO_2$, and Its composition correspond to celadonitic muscovite. Hornblende indicated calc amphibole group ($(Ca+Na)_{M4}{\geq}1.43$, $Na_{M4}<0.67$). and consolidation pressure of granitic body by geobarometer of Hammerstrume and Zen show 11.3~17.2 Km.

Petrological Study on Small-scale Granites in the Central Part of Yeongnam Massif (영남육괴 중부지방에 존재하는 소규모 화강암체들의 암석학적 연구)

  • Kim, Hyeong-Gyu;Jwa, Yong-Joo;Kim, Jae-Hwan;Park, Sung-Chul
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.279-298
    • /
    • 2019
  • Mupung granite, which is located adjacent to Gimcheon granites to the north and Geochang granites to the south, has been known to consist of biotite-hornblende granite (Gbh), porphyritic granite (Gp), and hornblende-biotite granite (Ghb). In this study, we subdivided the Gbh of Mupung granite into biotite granite (Gb) and biotite hornblende granite (Gbh), based on petrological observations. The grayish Gb with medium to coarse grain and porphyritic texture contains a small amount of muscovite, but the hornblende and mafic microgranular enclave (MME) is not observed in Gb. On the other hand, MME can be commonly found in pinkish Gbh. The mafic minerals in Gbh are mostly hornblende and biotite. In the Gb in Mupung granites, the hornblende and sphene (which is the characteristic minerals in Gimcheon granite) are not observed. In addition, the trend of the changes in major elements of Gb in Mupung granites is similar to that of Geochang granites. These petrological characteristics suggest that the Gb in Mupung granite has a similarity with Geochang granite (than Gimchen granite). We also observed that the texture and composition of minerals of Gbh, as well as those of surrounding Gp and Ghb, are consistent with the characteristics of Cretaceous granites in Gyeongsang basin, rather than those of Jurassic granites in Yeongnam massif.

Comparative Anatomy of the Hydrothermal Alteration of Chonnam and Kyongsang Hydrothermal Clay Alteration Areas in Korea (전남 및 경상 열수변질 점토광상의 생성환경 비교)

  • Koh, Sang Mo;Chang, Ho Wan
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • Chonnam and Kyongsang clay alteration areas are distributed in volcanic fields of the Yuchon Group in late Cretaceous period. The host rock of the Chonnam alteration area is generally acidic and that of the Kyongsang alteration area is acidic to dominantly intermediate volcanics. The important difference of two alteration areas is source of fluid; the Chonnam alteration area is characterized by dominantly meteoric water and the Kyongsang alteration area is characterized by dominantly magmatic water. Accordingly, the high temperature minerals such as pyrophyllite and andalusite, and boron bearing minerals such as dumortierite and tourmaline are common in the Kyongsang alteration area. In contrast to this, the lower temperature minerals such as kaolin and alunite are common in the Chonnam alteration area. The mineralogical difference of two alteration areas were depended on the difference of the formation temperature of clay deposits. The other important geochemical difference is the chemistry of hydrothermal solution such as pH. The alteration of "acid-sulfate type" with alteration mineral assemblage of alunite-kaolin-quartz is dominant in the Chonnam alteration area, which was caused by the attack of strong acid and acid solution. In contrast to this, the that of "quartz-sericite type" with the mineral assemblage of sericite-quartz is dominant in the Kyongsang alteration area, which was caused by the attack of neutral or weak acid solution. Also, the Kyongsang and Chonnam alteration areas show the difference in structural setting; the Chonnam alteration area is commonly associated with silicic domes and the Kyongsang alteration area is commonly associated with calderas.

  • PDF