• 제목/요약/키워드: 마그네틱 댐퍼

검색결과 4건 처리시간 0.016초

회전체 진동 감소를 위한 마그네틱 댐퍼의 설계 및 응용 (Design and Application of Magnetic Damper for Reducing Rotor Vibration)

  • 김영배;이형복;이봉기
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.355-361
    • /
    • 2000
  • In this study, active control magnetic actuator for reducing vibration of rotor system is performed. Identification, modeling, simulation, control system design, and evaluation of active magnetic damper system have been researched. Power amplifier modeling, connected magnetic actuator and augmented by system identification, is included to establish a magnetic damper simulation which provides close performance correspondence to the physical plant. A magnetic actuator, digital controller using DSP(Digital Signal Processor), and bipolar operational power supply/amplifiers are developed to show the effectiveness of reducing rotor vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent components is developed. Two kinds of test are executed as sliding and oil bearing. Results presented in this paper will provide a well-defined technical parameters in designing magnetic damper system for the proposed rotor.

전자기 마그네틱 댐퍼를 이용한 자동차 현가계 진동의 능동 제어 연구 (A Study for Active Vibration Control of a Automotive Suspension System Using Electro-magnetic Damper)

  • 이경백;김영배;이형복
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.71-78
    • /
    • 2002
  • This paper is concerned with the design and implementation of magnetic damper system to reduce the vibration of suspension system actively. Cylindrical type electro-magnetic actuator with permanent magnet is analyzed and effective controller design is made. Magnetic force analyzed and transfer function for the total system is determined by experimental data using error minimization method. For experiments, simple suspension structure system is utilized, in which a magnetic damper composed of permanent magnet and digital controller is attached. In order to drive the system, bipolar power amplifier of voltage control type is utilized. Stable and high speed control board is used to perform digital control logic for the given system. This paper shows that the magnetic damper system using phase-lead controller excellently reduces vibration of 1-D.O.F (degree of freedom) suspension system.

회전체 진동감소를 위한 마그네틱 댐퍼 설계 및 응용

  • 이봉기;김영배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.769-772
    • /
    • 1995
  • Most turbo machines, which operate at high speeds, such as gas turbines, jet engines, pumps, and compressors are prone to perrturbing vibrations. The best vibration control method for rotors is to eliminate destabilizing factors. Careful balancing application of "more stable" oil-lubricated bearing, such as tilting pad bearings or use of anti-swirl devices in seals, are examplse of passive vibration control methods. the use of magnetic bearing is an active control method. An obvious advantage of active control is that it provides damping (or modifies system stiffness or other parameters) only when there is a need for that, i.e., in emergency states, while not affecting the rotor normal operational conditions. Moreover, active control methods provide exact position control through on-line control. In this study, a magnetic actuator, digital contrliier using DSP, and bipolar operational power supply/amplifiers were developed to show the effectiveness of reducing robot vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent component was developed. Results presented in this dissertation will provide a well-defined technical parameters in designing magnetic damper system.er system.

  • PDF

퍼지 마그네틱 댐퍼를 사용한 회전체 진동의 저감 연구 (A Study of Rotor Vibration Reduction using Fuzzy Magnetic Damper System)

  • 이형복;김영배
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.748-755
    • /
    • 2001
  • This paper concerns rotor vibration reduction using magnetic damper system. The fuzzy control logic is utilized to fulfill desired motion. The fuzzy system structure and membership function were first determined by simulation results. The researched control logic contains two fuzzy controller : reference position variation according to the rotor whirling status and error compensation algorithm to minimize the rotor vibration due to unbalance and unstable fluid film force. The Sugeno type output membership function was utilized by several trials and optimized membership function constants were selected from experiments. The experimental results show that the proposed method effectively control and reduce the rotor vibration with fluid film bearings.