• Title/Summary/Keyword: 마그네타이트 형성

Search Result 8, Processing Time 0.027 seconds

The Microstructure of Magnetite Coated on Honeycomb and Characteristics of CO2 Decomposition (허니컴에 코팅한 마그네타이트의 미세구조 및 CO2 분해특성)

  • 윤용운;김은배;이병하;고태경;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.410-416
    • /
    • 2004
  • In this study, we fabricated magnetite coated on a cordierite honeycomb which has complex shape by ultrasound-enhanced ferrite plating. The effects of the plating condition on the formation of the magnetite and its microstructure were investigated. The magnetite coated on the honeycomb became an oxygen-deficient ferrite by H$_2$ gas reduction, then the effects of the molar concentrations of ammonium acetate for $CO_2$ gas decomposition have been studied. As the molar concentration of a pH buffer($CH_3$COONH$_4$, 0.1946∼0.3892 M) solution increased, the average particle size increased about 200∼250 nm. The magnetite coated on the honeycomb was reduced by H$_2$ gas for 2 h at 30$0^{\circ}C$. The inner pressure change in the cell began to occur at 315∼34$0^{\circ}C$. The H$_2$-Reduced magnetite coated on the honeycomb at 35$0^{\circ}C$ contained an oxygen deficient magnetite and $\alpha$-Fe phase. The thermogravimetric analysis with H$_2$ reduction and $CO_2$ decomposition were carried out with the magnetite coated on the honeycomb. A weight loss in process of H$_2$ reduction occurred between 32$0^{\circ}C$ and 34$0^{\circ}C$, while a weight gain was observed during the $CO_2$ decomposition.

Large Magneto-Resistance in Magnetite Nanoparticles (마그네타이트 극미세 나노입자의 자기저항 현상)

  • Jang, Eun-Young;Lee, Nyun-Jong;Choi, Deung-Jang;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.154-158
    • /
    • 2008
  • Magnetite($Fe_3O_4$) is currently one of key materials for applications in magnetic storage and many bioinspired applications because bulk $Fe_3O_4$ has a high Curie temperature($Tc={\sim}850K$) and nearly full spin polarization at room temperature(RT). In this work, $Fe_3O_4$ nanoparticles with different sizes of 12 to 15 nm were prepared in a well-controlled manner by a nonhydrolytic synthetic method. Here, we report the significant intergrain magneto-resistance(MR) of ${\sim}2%$ at RT in $Fe_3O_4$ nanoparticle pellets. The tunneling conductance was also investigated based on the Brinkman model, as well. Our results show clearly that the surface or interfacial property of the particles plays a crucial role in the MR effect.

Preparation and Property of Water Based Manetic Fluid by Peptization Method (해교법에 의한 수상자성유체의 제조 및 특성에 관한 연구)

  • Oh, Jae-Hyun;Kim, Min-Seuk;Kim, Mahn;Kim, Seung-Wan
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.234-240
    • /
    • 1993
  • The water-based magnetic fluids were prepared with the synthesized ultrafine magnetite, dodecanoic acid as surfactant. Characteristics of synthesized ultrafine magnetite were investigated with X-ray Diffraction Pattern, Transmission Electron Microscope, Vibrating Sample Magnetometer and BET analysis. Dispersion characteristics of water-based magnetic fluids were investigated in relation to amounts of surfactant, pH and solid content.

  • PDF

Characteristics of Water-Based Magnetic Fluid Using Saturated Fatty Acids (포화지방산에 의한 수상자성유체의 분산특성)

  • Kim, Mahn;Oh, Jae-Hyun;Lee, Woo-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.241-246
    • /
    • 1993
  • The water-based magentic fluids were successfully prepared with the synthesized ultrafine magnetite using saturated with fatty acids($C_{9}~C_{18}$) and SDBS as surfactants. The dispersion index of water-based fluids was about 85 % when the amounts of lauric acid and SDBS for the 27 g of magnetite were more than $2.66{\times}10^{-2}mol$ and 5 g($7.17{\times}10^{-2}mol$) respectively. As the solid content increased from 0.05 g/cc to 0.4 g/cc, saturated magnetization of magnetic fluids at 5 kOe increased from 2.07 emu/g to 9.31 emu/g and its viscosity increased from 1.20 cp to 3.95 cp. The stable pH region in which the magnetic fluids prepared with lauric acid and SDBS was range of 3.1 to 11.1. It was found that the water-based magnetic fluids was well dispersed as the carbon length of fatty acid increased, but the amount of scum of the magnetic fluids increased.

  • PDF

Preparation and properties of water-based magnetic fluid with synthesized magnetite (합성마그네타이트를 이용한 수상자성유체의 제조 및 특성)

  • Kim, Mahn;Oh, Jae-Hyun;Seo, Ho-Jun;Cho, Moung-Ho;Kim, Mi-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.173-178
    • /
    • 1994
  • The water-based magnetic fluids were prepared with the synthesized ultra-fine magnetite, oleic acid and SDBS (sodium dodecyl benzene sulfonate) as surfactants. The dispersion of water-based magnetic fluids was about 90 % when the added amounts of oleic acid and SDBS for magnetite(27 g) were more than $2.66{\times}10^{-3}$ mol and 10 g respectively. As the solid content increased from o. 05 g/cc to 0.4 g/cc, saturation magnetization of magnetic fluids at 5 kOe increased from 1.98 emu/g to 9.63 emu/g at $Fe^{2+}/Fe^{3+}=0.5$ and from 2.7 emu/g to 14.63 emu/g at $Fe^{2+}/Fe^{3+}=1.0$, and the its viscosity increased from 1.3 cp to 4.4 cp at $Fe^{2+}/Fe^{3+}=0.5$. pH region of oleic acid and SDBS stabilized water-based mag¬netic fluids was stable was in the range of pH 3.0 to pH 11.0. Stability of Water-based magnetic fluids can be obtained by observation of magnetic memory patterns on the VCR tape.

  • PDF

Removal of Suspended Solids in Aquacultural Recirculating Water by Magnetic Fluid Separation (자성 유체분리에 의한 양어장 순환수내 부유 고형물의 제거)

  • KIM Yong-Ha;YEO Ryoung-Mo;SUH Kuen-Hack;KIM Hang-Goo;CHUNG Uoo-Chang;KIM Soon-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.649-653
    • /
    • 1999
  • A magnetic fluid separation technology was confirmed to be very effective to remove the suspended solids (SS) from aquacultural recirculating water, In this study, the effects of operating variables on the characteristics of SS removal were investigated through the test runs using magnetite of 2 $\mu$m mean diameter as magnetic powder. Magnetic flocculation here formed by adsorbing fine magnetites on the surface of suspended solid was observed. The strength of magnet was of significance in determining the SS removal efficiency as well as the capacity of the equipment. In addition, the SS removal efficiency decreased with an increase in the superficial liquid velocity, but the effect became negligible when the mass ratio of magnetite to the suspended solids was higher than 1.0.

  • PDF

Mass Production of Carbon Nanotubes Using Magnetic Fluids (자성유체를 이용한 탄소나노튜브의 대량 합성)

  • 조유석;최규석;김도진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.37-41
    • /
    • 2003
  • 열화학 기상합성법을 이용한 탄소나노튜브의 성장에서 촉매 금속 층의 형성 공정은 탄소나노튜브의 직경 및 길이를 제어해주는 가장 중요한 요소이다. 탄소나노튜브의 대량합성을 위해 자성유체를 이용한 촉매 금속 층의 손쉬운 형성공정을 개발하였다. 수용성 폴리비닐알코올과 마그네타이트 나노 입자들이 혼합된 자성유체를 다양한 기판에 스핀 코팅하여 촉매 금속 층을 간편하게 형성할 수 있었다. 자성유체 제조 시 혼합된 수용성 폴리비닐알코올은 자성유체용액의 점성을 증가 시켜 주었으며, 이러한 점성의 증가는 스핀 코팅 시 용액과 기판간의 접착력을 증대시켜 주었다. 또한 건조 과정 이후에도 잔류되어 탄소나노튜브 합성 공정 중에 촉매금속이 응집되는 현상을 방지 차여 균일한 입자 크기를 유지하도록 하였다. 이는 고밀도의 수직 배열된 탄소나노튜브의 성장의 직접적인 원인으로 생각된다. 또한 탄소나노 튜브의 대량 합성을 위해서 Si 기판 치에 알루미나와 금속 기판에서도 탄소나노튜브의 성장을 시도하였다.

  • PDF

Empirical study on inhibition effect of scale and rust in tap-water line by zinc ionization device (아연 이온화 장치에 의한 상수배관 내 스케일 및 녹 생성 억제효과 실증 연구)

  • Yum, Kyung-Taek;Choi, Jung-Wook;Yang, Sung-Bong;Shim, Hak-Sup;Yu, Mee-Seon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.465-476
    • /
    • 2021
  • Scale and rust generation in water pipes is a common phenomenon when cast iron water pipes have been used for a long time. A physical water treatment device is known among various means for suppressing rust in a water pipe, and a zinc ionization device for putting zinc metal into a pipe and emitting the zinc cation into water is one of such devices. This research measured the amount of zinc ion generated, which is known to exhibit an effect of inhibiting rust and scale generation in a pipe, and examined the scale and rust inhibition effect of the ionization device installed for ground or building water supply. In the case of distilled water, the concentration of zinc ion increased by circulating water in the ionization device several times, and it was verified to be hundreds of ㎍/L, and in the case of discharging ground or tap water, it was verified to be tens of ㎍/L. In addition, a verification pipe was installed to confirm the change inside the pipe before and after installation of the zinc ionization device, and the internal condition of the pipe was observed 3 months to several years after installation. It was confirmed that the corrosion area of the surface of the pipe was no longer increased by installing a corrosion inhibitor, and if the pipe was already filled with corrosion products, the amount of corrosion products gradually decreased every year after installation. The phenomenon of fewer corrosion products could be interpreted as expanding the space in the pipe due to the corrosion product as Fe2O3 adhered to the inner surface of the pipe and turned into a smaller black Fe3O4. In addition, we found that scale such as CaCO3 together in the corrosion by-products gradually decreased with the attachment of the ionization device.