• Title/Summary/Keyword: 마그네슘-임플란트

Search Result 9, Processing Time 0.028 seconds

Histomorphometry and Stability Analysis of Loaded Implants with two Different Surface Conditions in Beagle Dogs (하중을 가한 두 가지 표면의 임플란트에 관한 조직형태학적 분석 및 안정성 분석 (비글견을 이용한 연구))

  • Kim, Sang-Mi;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.337-349
    • /
    • 2008
  • Despite an improved bone reactions of Mg-incorporated implants in the animals, little yet has been carried out by the experimental investigations in functional loading conditions. This study investigated the clinical and histologic parameters of osseointegrated Mg-incorporated implants in delayed loading conditions. A total of 36 solid screw implants (diameter 3.75 mm, length 10mm) were placed in the mandibles of 6 beagle dogs. Test groups included 18 Mg-incorporated implants. Turned titanium Implants served as control. Gold crowns were inserted 3 months. Radiographic assessments and stabilitytests were performed at the time of fixture installation, $2^{nd}$ stage surgery, 1 and 3 months after loading. Histological observations and morphometrical measurements were also performed. Of 36 implants, 32 displayed no discernible mobility, corresponding to successful clinical function. There was no statistically significant difference between test implants and controls in marginal bone levels (p=0.413) and RFA values. The mean BIC % in the Mg-implants was $54.4{\pm}20.2%$. The mean BIC % in the turned implant was $48.9{\pm}8.0%$. These differences between the Mg-implant and control implant were not statistically significant (P=0.264). In the limitation of this study, bone-to-implant contact (BIC) and bone area of Mg-incorporated oxidized implant were similar to machine-turned implant. The stability analysis showed no significantly different ISQ values and marginal bone loss between two groups. Considering time-dependent bone responses of Mg-implant, it seems that Mg-implants enhanced bone responses in early loading conditions and osseointegrated similarly to cp Ti implants in delayed loading conditions. However, further investigations are necessary to obtain long-term bone response of the Mg-implant in human.

A Prospective Clinical Trial on the Mg Oxidized Clinical Implants (마그네슘 양극산화 임플란트의 성공률에 관한 전향적 임상연구)

  • Im, So-Min;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra;Um, Heung-Sik;Lee, Jae-Kwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.25-39
    • /
    • 2011
  • In animal studies, Magnesium (Mg) - incorporated oxidized implants showed significant enhancement of the bone response. This prospective clinical trial was performed to investigate the success rate, implant stability and marginal bone loss of Mg oxidized clinical implant. The experimental protocol was approved by Institutional Review Board of the Gangneung-Wonju National University Dental Hospital. Fifty healthy patients had partial edentulism were included in this study. Mg oxidized clinical implants (Implant M, Shinhung, Korea) were installed and restored with conventional protocol. The patients were recalled at 1, 3, 6 months after functional loading. Implant stability quotient (ISQ) was measured and periapical radiographic images were obtained. Amount of marginal bone loss was calculated with calibrated images from periapical radiographs. Repeated measured analysis of variance and post hoc Tukey test were used to compare the mean ISQ and bone level. A total of 101 implants were analyzed. The mean ISQ values increased continuously with time lapse from 68.4 at fixture installation to 71.5 at 6 months after loading. Implant stability was correlated with gender, fixture diameter, bone quality and implant sites. The mean marginal bone loss during 6 months after loading was 0.26 mm. There was no failed implant and six-month success rate was 100%. Within the limitations of this study, the six-month success rate of Mg oxidized implant was satisfactory. The implant stability and marginal bone level were excellent. However, further longer clinical studies will be needed to confirm the success of Mg oxidized clinical implant.

Removal Torque of Mg-ion Implanted Clinical Implants with Plasma Source Ion Implantation Method (마그네슘 이온주입 임플란트의 뒤틀림 제거력에 관한 연구)

  • Kim, Bo-Hyoun;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.41-52
    • /
    • 2009
  • The surface treatment of titanium implant could bring out the biochemical bonding between bone and implant. The purpose of this study was to evaluate the biomechanical bone response of Mg-ion implanted implants with plasma source ion implantation method. Twelve New Zealand white rabbits were included in this study. Each rabbit received one control fixture (blasted with resorbable blasting media, RBM) and three types of Mg ion implanted fixtures in tibiae. The implants were left in place for 6 weeks before the rabbits were sacrificed. Removal torque value and resonance frequency analysis (ISQ) were compared. The repeated measured analysis of variance was used with $P{\leq}0.05$ as level of statistical significance. ISQ was not different among all groups. However, the ISQ was increased after 6 weeks healing. The group had lowest ISQ value showed the greatest increment. Mg-1 implants with 9.4% retained ion dose showed significantly higher removal torque value than that of the other implants. From this results, it is concluded that the Mg-1 implants has stronger bone response than control RBM surface implant.

Regional-level analysis of magnesium alloys for biomaterial (생체용 마그네슘합금의 국가별 수준 분석)

  • Kil, Sang-Cheol;Nam, Soo-Woo;Kim, Hwan-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.643-645
    • /
    • 2012
  • 본 연구에서는 생체용 마그네슘의 국내외 연구 동향을 파악하기 위해 Web of Science 데이터베이스를 사용하여 SCI-E 학술지에 게재된 논문을 조사하여 분석하였다. 생체용 마그네슘합금에 관한 논문이 2005년부터 많이 발표되기 시작하여 2007년을 기점으로 급격하게 증가하기 시작하였다. 따라서 최근 생체 내에서 분해하여 소멸되는 임플란트의 필요성과 함께 마그네슘합금이 최적의 생체재료로 각광을 받으면서 이에 관한 연구가 5~7년 전부터 폭발적으로 활성화되었으며, 중국, 독일, 미국, 그리고 일본이 생체용 마그네슘합금 연구개발에 선도적인 역할을 하고 있음을 알 수 있었다.

  • PDF

The success rate of Mg-incorporated oxidized implants in partially edentulous patients: a prospective clinical study (부분 무치악 환자에서 마그네슘 이온주입 임플란트의 성공률에 대한 전향적 임상연구)

  • Choi, Su-Jung;Yoo, Jung-Ho;Lee, Ku-Bok;Kim, Jin-Wook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.176-183
    • /
    • 2012
  • Purpose: This study examined the clinical success rate of Mg titanate implants (M Implant system, Shinhung, Korea), which employ a Mg coating method, by evaluating the marginal bone loss and implant stability using radiographs and Osstell$^{(R)}$, over a 1 year. Materials and methods: The locations of the implants placement were divided into 4 areas; the maxillary and mandibular premolars and molars. In the maxilla, 8 and 9 implants were inserted in the premolar and molar areas, respectively. In the mandible, 11 and 51 implants were inserted in the premolar and molar areas. Marginal bone loss and ISQ of all implants (79) were measured after insertion, mounting the prosthetic appliance, and 1, 3, 6, and 12 months after loading. The marginal bone loss was measured from the radiograph using XCP bite, which was customized, and the implant stability measured using Osstell$^{(R)}$. Fisher's exact test (${\alpha}$=.05) was used to compare the success rates of each region. Results: The mean marginal bone loss for the upper and lower jaws were 1.537 mm and 1.172 mm. The mobility showed a non-significant reduction or increase according with time. The success rates were accounted for 94.12% and 98.39% in the upper and lower jaws; the premolars and molars were accounted for 100% and 96.67%. The two cases of early failure resulted from failure of primary stability during implant insertion. The late failures were not observed for 1 year after adding a loading to the implants. Conclusion: The Mg titanate implant showed good primary stability and good clinical results in both healing and function.

Cell study on the Magnesium ion implanted surface with PSII (PSII를 이용한 마그네슘 이온 주입 임플란트에 대한 MC3T3-E1 골모양 세포 반응 연구)

  • Shin, Hyeong-Joo;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra;Lee, Hee-Su;Cha, Min-Sang
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.4
    • /
    • pp.361-374
    • /
    • 2009
  • For successful osteogenesis around the implants, interaction between implant surface and surrounding tissue is important. Biomechanical bonding and biochemical bonding are considered to influence the response of adherent cells. But the focus has shifted surface chemistry. The purpose of this study is to evaluate the MC3T3-E1 osteoblast like cell responses of magnesium (Mg) ion implanted titanium surface produced using a plasma source ion implantation method. Commercially pure titanium disc was used as substrates. The discs were prepared to produce four different surface, A: Machine turned surface, B: Mg implanted surface, C: sandblasted surface, D: sandblasted and Mg implanted surface. MC3T3 El osteoblastic like cells were cultured on the disc specimens. Cell adhesion, proliferation, differentiation, and synthesis of extracellular matrix were evaluated. The cell adhesion morphology was evaluated by SEM. RT PCR assay was used for assessment of cell adhesion, proliferation and differentiation. ALP activity was measured for cell differentiation. The results of this study were as follows: 1. SEM showed that cell on Mg ion groups was more proliferative than that of non Mg ion groups. On the machine turned surface, cell showed some degree of contact guidance in aligning with the machining grooves. 2. In RT PCR analysis, osteonectin and c-fos mRNA were more expressed on sandblasted and Mg ion implanted group. 3. ALP activity was not significantly different among all groups. Within the limitations of this study, the following conclusions were drawn: It might indicate Mg ion implanted titanium surface induce better bone response than non Mg ion groups.

Improvement of Mechanical and Corrosion Properties of Mg-Ca-Zn Alloy by Grain Refinement (Grain Refinement를 통한 Mg-Ca-Zn합금의 기계적 특성 및 부식 특성 향상)

  • Kim, Dae-Han;Choi, Jong-Min;Lim, Hyun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.418-424
    • /
    • 2017
  • Magnesium has a higher specific strength than other metals and is widely used industry wide due to its excellent vibration absorption ability and electromagnetic wave shielding property.For example, it is used for automobile parts such as car seat frames and cylinder heads, and is widely used in electronic products such as notebook cases and mobile phone cases. In addition, it is in the spotlight as a bone-implant material used to assist in the treatment of damaged bones when the bones are cracked or broken. Currently, Ti alloy, stainless steel and Co-Cr-Mo alloy are used as the implant material, and the Mg alloy remains in research stage. The current problem with bone implant implants is that the patients must undergo reoperation to remove the implants after joint surgery. Magnesium, however, can achieve sufficient strength compared to current materials. In addition, since it is self-decomposed after the recovery, reoperation is not necessary. In this paper, Mg alloys were designed by adding harmless Ca and Zn to the human body. In order to improve the strength and corrosion resistance, the final alloy was designed by adding a small amount of Sr as a grain refiner. The radioactive elements of Sr are harmful to the human body, but other naturally occurring Sr elements are harmless. Microstructure analysis of the alloys was performed by optical microscopy and scanning electron microscopy. The mechanical properties and corrosion characteristics were evaluated by tensile test, potentiodynamic test and immersion test.

Comparison of PEO Coating Layer of AZ31 Alloy Surface according to EDTA Contained in Electrolytic Solution (전해 용액에 포함된 EDTA에 따른 AZ31 합금 표면의 PEO 코팅 층 비교)

  • Woo, Jin-Ju;Kim, Min-Soo;Koo, Bon-Heun
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.185-190
    • /
    • 2020
  • Titanium is widely used as an implant material due to its excellent biocompatibility, but has a problem due to high cost and high Young's modulus compared to bone. Magnesium alloy is attracting attention as a material to replace it. Magnesium alloy, like titanium, has excellent biocompatibility and has a Young's modulus similar to that of bone. However, there are corrosion resistance problems due to corrosion, and various surface treatment methods are being studied to solve them. In this study, the ceramic coating layer was grown on the surface of the AZ31 magnesium alloy in an electrolytic solution containing EDTA, and the properties of the formed coating were analyzed through SEM and XRD to analyze the microstructure and shape, and measured the micro hardness of the coating layer. Corrosion properties in the body were evaluated through a corrosion test in SBF solution, a component similar to blood plasma.

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.