• Title/Summary/Keyword: 마그네슘 복합재료

Search Result 25, Processing Time 0.031 seconds

Development of Continuous SiC Fiber Reinforced Magnesium Composites Using Liquid Pressing Process (액상가압성형 공정을 이용한 SiC 연속섬유 강화 마그네슘 복합재료 개발)

  • Cho, Seungchan;Lee, Donghyun;Lee, Young-Hwan;Shin, Sangmin;Ko, Sungmin;Kim, Junghwan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.247-250
    • /
    • 2020
  • In this study, the possibility of manufacturing a magnesium (Mg) composites reinforced with continuous silicon carbide (SiC) fibers was examined using a liquid pressing process. We fabricated uniformly dispersed SiC fiberAZ91 composites using a liquid phase pressing process. Furthermore, the precipitates were controlled through heat treatment. As a continuous Mg2Si phase was formed at the interface between the SiC fiber and the AZ91 matrix alloy, the interfacial bonding strength was improved. The tensile strength at room temperature of the prepared composite was 479 MPa, showing excellent mechanical properties.

Effect of Ca and Y combined addition on the corrosion behaviors of die-cast AZ91 magnesium alloy (다이캐스트 AZ91 마그네슘합금의 부식거동에 미치는 Ca과 Y 복합 첨가의 영향)

  • Woo, Sang Kyu;Blawert, Carsten;Yi, Sang bong;Yim, Chang dong;Kim, Young min;You, Bong sun;Scharnagl, Nico;Yasakau, Kiryl
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.123.1-123.1
    • /
    • 2016
  • 마그네슘 및 마그네슘 합금은 차세대 경량 구조 재료로서 많은 각광을 받고 있지만, 상대적으로 높은 반응성과 낮은 부식저항성으로 인해 사용에 제한이 있어왔다. 최근 연구결과에 따르면, 상용으로 널리 쓰이는 AZ91 마그네슘합금에 Ca과 Y을 복합 첨가하였을 경우 마그네슘합금의 발화저항성을 크게 향상시키는 것으로 알려져 있어 마그네슘합금의 적용분야를 확대할 수 있을 것으로 많은 기대를 받고 있다. 그러나 이러한 합금이 실제적으로 적용되기 위해서는 반드시 내식성에 대한 평가와 연구가 수반되어야 하며, 이를 통해 부식거동에 대한 메커니즘을 규명함으로써 고내식 합금 개발을 위한 연구로 이어질 수 있도록 해야 한다. 따라서 본 연구에서는 기존의 AZ91D 합금과 Ca, Y이 복합 첨가된 modified AZ91D 합금 다이캐스트 주조재에 대하여 내식성을 평가 및 비교하고 부식 메커니즘을 규명하기 위한 미세조직 분석 및 부식거동 평가를 실시하였다. 본 연구결과에 따르면, AZ91D 합금 주조재에 Ca과 Y을 복합첨가한 합금은 발화저항성 뿐만 아니라 내식성도 크게 향상되는 것으로 나타났다. 이러한 내식성의 향상은 Ca과 Y의 첨가에 따른 Fe와 같은 불순물의 영향 감소 및 Ca과 Y이 포함된 이차상의 형성으로 인한 상과 기지간의 부식 전위의 차이 감소로 인한 미세 갈바닉 부식 발생의 감소 효과에 기인한 것으로 판단된다.

  • PDF

High temperature and damping properties of squeeze cast Mg hybrid Metal Matrix Composites. (하이브리드 Mg 복합재료의 진동 감쇠능 및 고온 특성평가)

  • 장재호;김봉룡;최일동;조경목;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.143-146
    • /
    • 2002
  • Mg alloy is the lightest material of structural materials and is noticed for lightweight automotive parts because of excellent castability, superior ductility and damping capacity than Al alloy. But Mg Alloy is poor corrosion resistance and high temperature creep properties. In this study, Mg Matrix Composites were fabricated by squeeze casting method to improve high temperature creep properties and damping capacity. Hybrid Mg composites reinforced with Alborex, graphite particle, and SiCp was improved creep properties and damping capacity compared with Mg alloy. Compared to the length ($9\mu\textrm{m}, 27\mu\textrm{m}, 45\mu\textrm{m} etc.$), Hybrid Mg composites reinforced with SiCp, one of the most superior of the length and Alborex were more superior than those reinforced with graphite particle and Alborex in mechanical properties, creep characteristics, and damping capacity, etc.

  • PDF

Static simulation of orbiting scroll for development of lighter compressor (경량압축기용 Mg합금 구동스크롤 적용을 위한 정적 유한요소해석)

  • Jung, Ki Ho;Lee, Guen An;Lee, Hyung Wook
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.29-32
    • /
    • 2014
  • 최근 유가상승 및 환경오염으로 인하여 자동차 연비 개선에 대한 관심이 날로 증가하고 있어 자동차 제조사들은 다양한 접근방법을 통해 경량화를 달성하고자 하고 있다. 경량화 방법으로는 경량재료의 적용, 고강도 소재를 이용한 부품소형화, 조립식 파트의 일체형 모듈화 등이 있으며, 본 연구에서는 경량구조재료인 마그네슘 합금을 자동차용 스크롤 압축기에 적용하기 위하여 기존 알루미늄 합금부품과의 열팽창 및 열변형의 비교를 통해 마그네슘 합금 적용한 스크롤 부품의 설계시 고려되어야 할 요소들을 분석 및 제시하고자 한다.

Fabrication and Characterization of CNFs/Magnesium Composites Prepared by Liquid Pressing Process (액상가압공정을 이용한 CNF/Mg 복합재료의 제조 및 특성평가)

  • Kim, Hee-Bong;Lee, Sang-Bok;Yi, Jin-Woo;Lee, Sang-Kwan;Kim, Yang-Do
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.93-97
    • /
    • 2012
  • Carbon nano fibers (CNFs) reinforced magnesium alloy (AZ91) matrix composites have been fabricated by liquid pressing process. In order to improve the dispersibility of CNFs and the wettability with magnesium alloy melt, CNFs were mixed with submicron sized SiC particles ($SiC_p$). Also, the mixture of CNFs and $SiC_p$ were coated with Ni by electroless plating. In liquid pressing process, AZ91 melts have been pressed hydrostatically and infiltrated into three reinforcement preforms of only CNFs, the mixture of CNFs and $SiC_p$ (CNF+$SiC_p$), and Ni coated CNFs and $SiC_p$ ((CNF+$SiC_p$)/Ni). Some CNFs agglomerates were observed in only CNFs reinforced composite. In cases of the composites reinforce with CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni, CNFs were dispersed homogeneously in the matrix, which resulted in the improvement of mechanical properties. The compressive strengths of CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni reinforced composites were 38% and 28% higher than that of only CNFs composite.

Characterization of TiC/Mg Composites Fabricated by in-situ Self-propagating High-temperature Synthesis followed by Stir Casting Process (자전연소합성법 및 교반주조 공정으로 제조된 TiC/Mg 금속복합재료의 특성연구)

  • Lee, Eunkyung;Jo, Ilguk
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.256-261
    • /
    • 2020
  • In this study, the ignition temperature of the Al-Ti-C reaction system, the microstructure and the mechanical properties of the TiC/Mg composite which produced by the self-propagating high-temperature synthesis (SHS) followed by stir casting process were investigated. Mg based composite with uniformly dispersed 0, 10, 20, and 30 vol.% TiC were fabricated, and higher volume fraction of TiC reinforced composite showed superior compressive strength and wear resistance as compared with Mg matrix. It is attributed to the less contamination, defects, impurities in TiC/Mg composite by the in-situ SHS yield effective load transfer from the matrix to the reinforcement.

Flame Retardant Properties of Basalt Fiber Reinforced Epoxy Composite with Inorganic Fillers (무기 필러가 첨가된 현무암섬유 강화 에폭시 복합재료의 난연 특성)

  • Mun, So Youn;Lee, Su Yeon;Lim, Hyung Mi
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • Basalt fiber reinforced epoxy composites with inorganic filler (BFRP-F) such as Mg(OH)2 (magnesium hydroxide), Al(OH)3 (aluminum hydroxide), Al2O3 (aluminum oxide) and AlOOH (boehmite) were prepared by hand lay-up and hot pressing. The combustive properties of BFRP-F were improved comparing with basalt fiber reinforced epoxy composite (BFRP) without inorganic filler. At a 30 wt% resin content, the limited oxygen index (LOI) of BFRP is 28.9, which is higher than that of epoxy (21.4), and the LOI of BFRP-F is higher than that of BFRP. The BFRP-F showed the lower peak heat release rate (PHRR), total heat release (THR) and total smoke release rate (TSR) than those of BFRP. We confirmed that the flame retardant properties of the composite were improved by the addition of inorganic filler through the dehydration reaction and oxide film formation.

Comparison of PEO Coating Layer of AZ31 Alloy Surface according to EDTA Contained in Electrolytic Solution (전해 용액에 포함된 EDTA에 따른 AZ31 합금 표면의 PEO 코팅 층 비교)

  • Woo, Jin-Ju;Kim, Min-Soo;Koo, Bon-Heun
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.185-190
    • /
    • 2020
  • Titanium is widely used as an implant material due to its excellent biocompatibility, but has a problem due to high cost and high Young's modulus compared to bone. Magnesium alloy is attracting attention as a material to replace it. Magnesium alloy, like titanium, has excellent biocompatibility and has a Young's modulus similar to that of bone. However, there are corrosion resistance problems due to corrosion, and various surface treatment methods are being studied to solve them. In this study, the ceramic coating layer was grown on the surface of the AZ31 magnesium alloy in an electrolytic solution containing EDTA, and the properties of the formed coating were analyzed through SEM and XRD to analyze the microstructure and shape, and measured the micro hardness of the coating layer. Corrosion properties in the body were evaluated through a corrosion test in SBF solution, a component similar to blood plasma.

Microstructure and Corrosion Properties of Plasma Electrolytic Oxide Coatings on AZ31 Magnesium Matrix Composite (플라즈마 전해 산화 처리한 AZ31 및 Al18B4O33w/AZ31 마그네슘 복합재료 피막의 미세구조 및 부식특성)

  • Cheon, Jinho;Park, Yongho;Park, Ikmin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.270-274
    • /
    • 2011
  • Plasma electrolytic oxidation (PEO) treatment was performed on squeeze cast AZ31 alloy and $Al_{18}B_4O_{33}w/AZ31$ composite. Scanning electron microscope (SEM) was employed to characterize the surface morphology and cross-section microstructure of the coating. The phase structures of the PEO coating were analyzed by X-ray diffraction (XRD). The corrosion resistance of the PEO coating was evaluated by electrochemical method. The results showed that the $Al_{18}B_4O_{33}$ whisker on the surface of the composite was decomposed and $MgAl_2O_4$ was formed in the PEO coating layer of $Al_{18}B_4O_{33}w/AZ31$ composite during PEO treatment. As a result, the electrochemical corrosion potential of the PEO coated $Al_{18}B_4O_{33}w/AZ31$ composite was increased compared with that of AZ31 alloy.