• Title/Summary/Keyword: 마그네슘합금 판재

Search Result 87, Processing Time 0.023 seconds

Finite-Element Analysis of Formability in Warm Square Cup Deep Drawing of Magnesium Alloy AZ31 Sheet (마그네슘 합금 AZ31 판재의 온간 사각컵 딥드로잉 성형성의 유한요소 해석)

  • Kim Heung-Kyu;Lee Wi Ro;Hong Seok Kwan;Han Byoung Kee;Kim Jong Deok
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.122-125
    • /
    • 2005
  • Magnesium alloys are expected to be widely used for the parts of structural and electronic applications due to their lightweight and EMI shielding characteristics. While the die casting has been mainly used to manufacture the parts from the magnesium alloys, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. However, the magnesium alloy has low formability at room temperature and therefore, in many cases, forming at elevated temperatures is necessary to obtain the required material flow without failure. In the present study, square cup deep drawing tests using the magnesium alloy AZ31 sheet were experimentally conducted at various elevated temperatures as well as room temperature, and the corresponding finite-element simulations, which calculated the damage evolution based on the Oyane's criterion, were conducted using the stress-strain relations from the tensile tests at various temperatures. The formability predictability by the finite-element analysis was investigated by comparing the predicted damage distributions over the deformed AZ31 sheet at elevated temperatures with the corresponding experimental deformations with failures.

  • PDF

Design and Analysis of vehicle Hood using Magnesium Alloy Sheets (마그네슘 합금 판재를 이용한 차량용 후드의 설계 및 해석)

  • Shin H. W.;Yoo H. J.;Yeo D. H.;Shin K. Y.;Koh Y. S.;Choi S. W.;Lee S. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.220-226
    • /
    • 2005
  • To achieve the weight reduction of a vehicle, Magnesium alloys are widely used in automobile parts because of its lightweight characteristics. Magnesium alloys also have advantages in recycling, stiffness, NVH , heat protection. But Magnesium alloy parts are mainly manufactured by diecasting processes, their productivity was not so high compared to by sheet metal working. We are developing vehicle hood using magnesium sheets. In this study we designed magnesium alloy hood which have equivalent mechanical characteristics to steel hood. Using finite element method we decided thickness of magnesium sheets under some design requirements and we changed the shape of hood inner panel and hinge reinforcements. Outer and inner panel thickness was 1.3mm, 1.5mm respectively. Panel dentibility analysis was performed to conform the new magnesium design by nonlinear FEM package. Formability and hemming of Magnesium sheets are the subjects for further study because they have poor stretchability compared to steel sheets.

  • PDF

Comparative Study of Applicability of Aluminum, Magnesium and Copper Alloy Sheets using Flexibly-reconfigurable Roll Forming (알루미늄, 마그네슘과 구리합금의 비정형롤판재성형 공정 적용성 비교에 관한 연구)

  • Kil, M.G.;Yoon, J.S.;Park, J.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.168-173
    • /
    • 2017
  • A new sheet metal forming process, called flexibly reconfigurable roll forming (FRRF), is expected to resolve the economical limitation of the existing 3D curved sheet metal forming processes. The height-controllable guides and a couple of flexible rollers are utilized as the forming tool. Recently, as the 3D curved sheet metal is increasingly demanded in various fields, the application of FRRF to diverse materials is necessary. In addition, the formability comparison of several materials is needed. Therefore, in this study, we investigated the applicability of FRRF for different materials such as aluminum, magnesium, and copper alloys, and also the formability of these materials was compared using FRRF. The numerical simulation was conducted using ABAQUS, the commercial software, and the experiments were carried out using an FRRF apparatus to validate the simulation results. Finally, the applicability of FRRF for the chosen materials and the formability of these materials on FRRF process were confirmed by comparing the simulation and experimental results.

Plastic Deformation Characteristic of AZ31 Magnesium Alloy Sheet (AZ31 마그네슘 합금판재의 소성변형특성)

  • Park J. G.;Kuwabara T.;You B. S.;Kim Y. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.520-526
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile tests of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile tests were performed until $7{\%}$ of engineering strain. Lankford values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci were calculated by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. In this study, Hill's 1979 yield function for the case of m=2.8 and Logan-Hosford yield function for the case of M=8 give good agreements with experimental results. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5{\%}$ of equivalent strain at biaxial tensile test.

Evaluation of Strain, Strain Rate and Temperature Dependent Flow Stress Model for Magnesium Alloy Sheets (마그네슘 합금 판재의 변형률, 변형률 속도 및 온도 환경을 고려한 유동응력 모델에 대한 연구)

  • Song, W.J.;Heo, S.C.;Ku, T.W.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • The formability of magnesium alloy sheets at room temperature is generally low because of the inherently limited number of slip systems, but higher at temperatures over $150^{\circ}C$. Therefore, prior to the practical application of these materials, the forming limits should be evaluated as a function of the temperature and strain rate. This can be achieved experimentally by performing a series of tests or analytically by deriving the corresponding modeling approaches. However, before the formability analysis can be conducted, a model of flow stress, which includes the effects of strain, strain rate and temperature, should be carefully identified. In this paper, such procedure is carried out for Mg alloy AZ31 and the concept of flow stress surface is proposed. Experimental flow stresses at four temperature levels ($150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$) each with the pre-assigned strain rate levels of $0.01s^{-1}$, $0.1s^{-1}$ and $1.0s^{-1}$ are collected in order to establish the relationships between these variables. The temperature-compensated strain rate parameter which combines, in a single variable, the effects of temperature and strain rate, is introduced to capture these relationships in a compact manner. This study shows that the proposed concept of flow stress surface is practically relevant for the evaluation of temperature and strain dependent formability.

A parametric Study in Incremental Forming of Magnesium Alloy Sheet (인크리멘탈 성형을 이용한 마그네슘 합금 판재의 성형변수에 관한 연구)

  • Park, J.G.;You, B.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.412-419
    • /
    • 2008
  • Using lightweight materials in vehicle manufacturing in order to reduce energy consumption is one of the most effective approach to decrease pollutant emissions. As a lightweight material, magnesium is increasingly employed in automotive parts. However, because of its hexagonal closed-packed(HCP) crystal structure, in which only the basal plane can move, the magnesium alloy sheets show low ductility and formability at room temperature. Thus the press forming of magnesium alloy sheets has been performed at elevated temperature within range of $200^{\circ}C{\sim}250^{\circ}C$. Here we try the possibility of sheet metal forming at room temperature by adopting incremental forming technique with rotating tool, which is so called as rotational-incremental sheet forming(RISF). In this rotational-incremental sheet forming the spindle tool rotates on the surface of the sheet metal and moves incrementally with small pitch to fit the sheet metal on the desired shape. There are various variables defining the formability of sheet metals in the incremental forming such as speed of spindle, pitch size, lubricants, etc. In this study, we clarified the effects of spindle speed and pitch size upon formability of magnesium alloy sheets at room temperature. In case of 0.2, 0.3 and 0.4mm of pitch size with hemispherical rotating tool of 6.0mm radius, the maximum temperature at contact area between rotating tool and sheet metal were $119.2^{\circ}C,\;130.8^{\circ}C,\;and\;177.3^{\circ}C$. Also in case of 300, 500, and 700rpm of spindle speed, the maximum temperature at the contact area were $109.7^{\circ}C,\;130.8^{\circ}C\;and\;189.8^{\circ}C$.

Development of jigs for planar measurement with DIC and determination of magnesium material properties using jigs (마그네슘 합금 판재의 평면 DIC 측정을 위한 지그 개발과 이를 활용한 단축 변형 특성 분석)

  • Kang, Jeong-Eun;Yoo, Ji-Yoon;Choi, In-Kyu;YU, Jae Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.23-29
    • /
    • 2021
  • The specific strength of magnesium alloy is four times that of iron and 1.5 times that of aluminum. For this reason, its use is increasing in the transportation industry which is promoting weight reduction. At room temperature, magnesium alloy has low formability due to Hexagonal closed packed (HCP) structure with relatively little slip plane. However, as the molding temperature increases, the formability of the magnesium alloy is greatly improved due to the activation of other additional slip systems, and the flow stress and elongation vary greatly depending on the temperature. In addition, magnesium alloys exhibit asymmetrical behavior, which is different from tensile and compression behavior. In this study, a jig was developed that can measure the plane deformation behavior on the surface of a material in tensile and compression tests of magnesium alloys in warm temperature. A jig was designed to prevent buckling occurring in the compression test by applying a certain pressure to apply it to the tensile and compression tests. And the tensile and compressive behavior of magnesium at each temperature was investigated with the developed jig and DIC equipment. In each experiment, the strain rate condition was set to a quasi-static strain rate of 0.01/s. The transformation temperature is room temperature, 100℃. 150℃, 200℃, 250℃. As a result of the experiment, the flow stress tended to decrease as the temperature increased. The maximum stress decreased by 60% at 250 degrees compared to room temperature. Particularly, work softening occurred above 150 degrees, which is the recrystallization temperature of the magnesium alloy. The elongation also tended to increase as the deformation temperature increased and increased by 60% at 250 degrees compared to room temperature. In the compression experiment, it was confirmed that the maximum stress decreased as the temperature increased.