• Title/Summary/Keyword: 링 전단시험

Search Result 63, Processing Time 0.023 seconds

Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application (토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용)

  • Jeong, Sueng-Won;Fukuoka, Hiroshi;Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.181-194
    • /
    • 2013
  • Landslides are known as gravitational mass movements that can carry the flow materials ranging in size from clay to boulders. The various types of landslides are differentiated by rate and depositional features. Indeed, flow characteristics are observed from very slow-moving landslides (e.g., mud slide and mud flow) to very fast-moving landslides (e.g., debris avalanches and debris flows). From a geomechanical point of view, shear-rate-dependent shear strength should be examined in landslides. This paper presents the design of advanced ring-shear apparatus to measure the undrained shear strength of debris flow materials in Korea. As updated from conventional ring-shear apparatus, this apparatus can evaluate the shear strength under different conditions of saturation, drainage and consolidation. We also briefly discussed on the ring shear apparatus for enforcing sealing and rotation control. For the materials with sands and gravels, an undrained ring-shear test was carried out simulating the undrained loading process that takes place in the pre-existing slip surface. We have observed typical evolution of shear strength that found in the literature. This paper presents the research background and expected results from the ring-shear apparatus. At high shear speed, a temporary liquefaction and grain-crushing occurred in the sliding zone may take an important role in the long-runout landslide motion. Strength in rheology can be also determined in post-failure dynamics using ring-shear apparatus and be utilized in debris flow mobility.

Structural Test for Assembly Frame of Payload Fairing (페이로드 페어링 체결 프레임에 대한 구조시험)

  • Lee, Jong-Woong;Jang, Young-Soon;Yi, Yeong-Moo;Kong, Cheol-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1129-1134
    • /
    • 2007
  • Payload fairing protects satellites and electrical equipments from the external environment. Payload fairing is jettisoned before satellite separation. Assembly frame for the separation of payload fairing were assembled with shear bolts. The role of shear bolts is to support structural load during flight and they are cut by explosion of pyro. The assembly frame which is connected by shear bolts is separated after the cutting of shear bolts. In this paper, structural tests and analysis were done for the design of the shear bolt. Compression, bending and shear load apply to the hardware including assembly frame. Test results showed that design of the shear bolt satisfied both structural strength for the support of flight load and required low strength for the cutting of shear bolts.

Shear-Rate Dependent Ring-Shear Characteristics of the Waste Materials of the Imgi Mine in Busan (부산 임기광산 광미의 전단속도에 따른 링 전단특성 연구)

  • Jeong, Sueng-Won;Ji, Sang-Woo;Yim, Gil-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.5-15
    • /
    • 2014
  • Abandoned mine deposits are exposed to various physico-chemical geo-environmental hazards and disasters, such as acid mine drainage, water contamination, erosion, and landslides. This paper presents the ring shear characteristics of waste materials. The ring shear box with a rotatable O-ring was used in this study. Three tests were performed: (i) Shear stress-time relationship for given normal stress and shear speed, (ii) shear stress as a function of shear speed, and (iii) shear stress as a function of normal stress. For a given normal stress (50 kPa) and speed (0.1 mm/sec), the materials tested exhibit a strain softening behavior, regardless of drainage condition. The peak and residual shear stresses were determined for each normal stress and shear speed. The shear stress was measured when shear speed is equal to 0.01, 0.1, 1, 10, 50, 100 mm/sec or when normal stress is equal to 20, 40, 60, 80, 100, 150 kPa. From the test results, we found that the shear stress increases with increasing shear speed. The shear stress also increases with increasing normal stress. However, different types of shearing mode were observed in drained and undrained conditions. Under drained condition, particle crushing was observed from the shearing zone to the bottom of lower ring. Under undrained condition, particle crushing was observed only at the shearing zone, which has approximately 1 cm thick. It means that a significant high shear speed under undrained condition can result in increased landslide hazard.

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests (링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석)

  • Jeong, Sang-Seom;Jung, Hyung-Suh;Whittle, Andrew;Kim, Do-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.5-17
    • /
    • 2021
  • In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.

Characteristics of Undrained Shear Strength of Yangsan Clay (양산점토의 비배수 전단강도 특성)

  • 김길수;임형덕;김대규;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.259-267
    • /
    • 2001
  • 실내시험으로 구한 점토의 공학적 성질은 샘플링, 운반, 저장, 그리고 성형과정 동안에 발생하는 시료의 교란으로 인해 원지반의 성질과 다르게 측정된다. 본 연구에서는 양산점토에 대한 삼축압축시험($CK_{o}$ UC) 결과를 이용하여 샘플링 방법에 따른 교란의 정도를 평가하였다. 실험에 사용된 시료는 76mm 튜브샘플러, 76mm 피스톤샘플러, 블록샘플러로 채취되었으며, 시료의 교란정도를 평가하기 위해 각 시료에서 측정된 체적변형률, 비배수 전단강도, Secant Youngs modulus, 그리고 파괴시 간극수압계수를 비교하였다. 시료의 교란정도를 평가하는 것 이외에도 SHANSEP 방법을 이용하여 수행한 $CK_{o}$ U 삼축압축시험 결과를 이용하여 양산점토에 대한 정규화 전단강도($C_{u}$ /$\sigma$$_{vc}$ )와 OCR 관계를 규명하였다. 또, 피에조콘 관입시험, 딜라토메타 시험, 그리고 현장 베인시험결과를 이용하여 구한 양산점토의 비배수 전단강도를 삼축압축시험 결과와 비교하였다.

  • PDF

Characteristics of Shear Behavior According to State of Particle Bonding and Crushing (입자 결합 및 파쇄 형태에 따른 전단거동 특성)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 2011
  • In order to analyze the influence of particle bonding and crushing on the characteristics of shear behavior, especially residual shear behavior of granular soil, ring shear test was simulated by using DEM(Discrete Element Method)-based software program PFC(Particle Flow Code). Total four models including two non-crushing models and two crushing models were created in this study by using clump or cluster model built in PFC. The applicability of Lobo-crushing model proposed by Lobo-Guerrero and Vallejo(2005) was investigated. In addition, the results of ring shear test were analyzed and compared with those of direct shear test. The results showed that the modelling of ring shear test should be conducted to investigate the residual shear behavior. The Lobo-crushing model cannot be applied to investigate the residual shear strength. Finally, it can be concluded that the numerical models excluding Lobo-crushing model suggested in this study can be used extensively for other studies concerning the residual shear behavior of granular soil including soil crushing.

Effect of Silty Soil Content on Shear Behavior of Sandy Soil (사질토의 전단거동에 실트 함량이 미치는 영향)

  • Yu, Jeongseok;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.21-26
    • /
    • 2020
  • Natural soil is composed of particles of various sizes, and the shear behavior which is a kind of mechanical behavior of the soil is affected by the particle size distribution. In addition, since the natural soil contains a large mixture of coarse and fine grained soil, it is difficult to clearly understand the shear behavior of the soil. Therefore, a ring shear test was conducted on sandy soils that has various particle size distribution in order to identify the effect of the distribution on shear characteristics of soils. At this time, sand and silt were used for coarse and fine grained soils, respectively, to make sandy soils by changing the silt content. Also the water was supplied during the test to confirm shear characteristics of sandy soils with various particle size distributions. The result shows that the shear strength increases as the silt content increases, and the strength decreases as the silt content increases over the sand. Besides, residual shear strength gradually decreases because of the silt content when the water is supplied.

Roughness Effect on the Residual Shear Characteristics of Jumunjin Sands (거칠기 효과를 고려한 주문진 표준사의 잔류전단강도 특성 분석)

  • Sueng-Won Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.717-724
    • /
    • 2023
  • Residual shear strength is an important parameter in landslide dynamics and may be considered the critical factor in landslide triggering. Tests were undertaken using Jumunjin sands to examine the effects of smooth and rough surfaces on ring-shear characteristics. Under dense and drained conditions, shear velocities were recorded as 0.01, 0.1, 1, 10, 50, 100 mm s-1, with shear strength increasing with velocity and producing increasingly fine content. Particle fragmentation may thus increase landslide mobilization when the landslide body is mixed with ambient water in channelized flows.

Ring Shear Characteristics of Waste Rock Materials in Terms of Water Leakage (누수유무에 따른 광산폐석의 링전단특성)

  • Jeong, Sueng Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.307-314
    • /
    • 2016
  • Shear characteristics of soils can be investigated using various types of shear stress measuring apparatus. Ring shear tests are often applied for examining the residual shear strength under the unlimited deformation. This paper presents drainage-consolidation-shear velocity dependent undrained shear strengths measured in terms of water leakage. A series of ring shear tests were performed under the constant normal stress (50 kPa) and controled shear velocity ranging from 0.01~1 mm/sec under the undrained condition. As a result, undrained shear strengths are dependent on shear velocity. It exhibits that straining hardening behavior is observed for the shear velocity lower than 0.1 mm/sec; however, the strain softening behavior is observed for the shear velocity higher than 0.1 mm/sec. Water leakage can cause the increase in shear stress irrespective of shear velocity. Shear stress increases with increasing amount of water leakage. It is due to the fact that the small grains and water flow out through the rubble edge in the ring shear box. Repetitive saturation and consolidation processes may minimize the error.

ABAQUS를 이용한 O-링 밀봉 부의 설계민감도 분석기법 연구

  • 이방업;구송회;조원만;오광한
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.3-11
    • /
    • 1996
  • 본 연구는 고체 추진기관의 각종 밀봉 부에 많이 사용되는 O-링의 설계시 고려되는 각종 형상인자의 변화에 따른 O-링의 거동과 응력 상태를 분석하여 설계 최적조건을 찾기 위한 내용을 다루고 있다. 조립 부의 내외경과 조립 공차, 챔퍼길이와 각도, 조립 홈의 외경, 깊이, 폭, 구성반경, O-링의 내경과 선 직경 등의 설계 변수에 의한 조립부 형상과 재료의 물성치, 유한요소 선택 및 요소 분할, 경계조건, 하중조건, 접촉부 정의 등을 MSC/PATRAN3의 $PCL^{[1]}$/로 프로그래밍 하여 설계변수에 의한 결과 분석을 손쉽게 수행할 수 있도록 시도하였다 고무의 Hyperelastic 물성치는 문헌상의 자료$자료^{[2]}$에 제시된 Ogden 상수를 사용하였으며 추후에는 인장시험, 순수전단시험, 이 축 인장시험을 통해 실험적으로 측정$^{[3]}$ 하여 적용할 예정이다. 고무의 대변형, 대 변형률을 고려한 비선형 응력해석은 MSC/PATRAN3의 Advanced FEA 모듈과 ABAQUS 5.5를 사용하였다. 본 연구에서의 해석결과를 설계변수들의 영향을 비교 분석하는데 사용하였으나 그 정확도가 입증된 상태는 아니며 추후 실제 조립 및 수압시험을 통해 평가할 예정이다.

  • PDF