• Title/Summary/Keyword: 링크 평균통행시간

Search Result 27, Processing Time 0.009 seconds

Distribution Characteristic Analysis for Link Travel Time Using GPS Data (GPS 수집자료를 이용한 링크통행시간 분포 특성 분석)

  • Lee, Young-Woo;Lim, Chae-Moon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.7-17
    • /
    • 2004
  • 지금까지의 링크통행시간에 대한 연구는 개별 차량의 평균을 통한 평균링크통행시간 산정 및 추정의 제한적인 연구가 대부분이었다. 그러나, 링크통행시간은 교통조건, 신호운영조건, 도로조건 등 다양한 영향인자로 인해 통행시간 분포가 구분되는 특성을 나타낸다. 따라서, 링크통행시간 특성을 좀 더 미시적으로 분석할 필요가 있다. 본 연구에서는 GPS를 이용한 실시간 교통자료 수집의 방법에 대해 살펴보았으며, GPS를 이용한 RTK 측량을 이용한 실시간 자료수집을 통하여 링크통행시간에 대한 연구를 수행하였다. 또한, 신호운영에 의한 영향으로 인한 링크통행시간 분포특성을 분석하기 위해 링크통행시간에 대한 현장조사를 추가적으로 실시하였다. 현장조사 결과분석을 통해 통행시간 분포특성 및 원인을 분석하고 프로그램을 이용한 시뮬레이션을 통해 보다 다양한 조건을 부여하여 링크통행시간분포비율에 영향을 주는 변수들에 대한 검토하고 통행시간 분포비율을 추정할 수 있는 모형을 구축하였다. GPS 실험차량을 이용한 주행실험결과를 분석한 결과 순행시간으로만 이루어지는 링크통행시간과 적색시간 동안 대기하였다가 링크구간을 통과하여 순행시간에 신호 대기시간을 더한 링크통행시간으로 통행시간이 구분되는 현상을 확인할 수 있었으며 따라서, 링크통행시간에 대한 분석은 통행시간을 하나의 평균통행시간으로 인식하는 것보다 두 개의 구분된 통행시간을 동시에 고려하는 것이 바람직할 것으로 판단되었다. 링크통행시간 분포특성에 대한 연구결과 또한, 통행시간이 양분되어 분포하는 것으로 분석되었다. 따라서, 링크통행시간의 경우 평균통행시간에 의한 결과보다 신호지체가 발생하지 않는 통행시간과 신호지체가 발생하는 통행시간으로 구분하는 것이 교통상황을 인식하는 것이 바람직할 것으로 나타났다.

Establish for Link Travel Time Distribution Estimation Model Using Fuzzy (퍼지추론을 이용한 링크통행시간 분포비율 추정모형 구축)

  • Lee, Young Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.233-239
    • /
    • 2006
  • Most research for until at now link travel time were research for mean link travel time calculate or estimate which uses the average of the individual vehicle. however, the link travel time distribution is divided caused by with the impact factor which is various traffic condition, signal operation condition and the road conditional etc. preceding study result for link travel time distribution characteristic showed that the patterns of going through traffic were divided up to 2 in the link travel times. therefore, it will be more accurate to divide up the link travel time into the one involving delay and the other without delay, rather than using the average link travel time in terms of assessing the traffic situation. this study is it analyzed transit hour distribution characteristic and a cause using examine to the variables which give an effect at link travel time distribute using simulation program and determinate link travel time distribute ratio estimation model. to assess the distribution of the link travel times, this research develops the regression model and the fuzzy model. the variables that have high level of correlations in both estimation models are the rest time of green ball and the delay vehicles. these variables were used to construct the methods in the estimation models. The comparison of the two estimation models-fuzzy and regression model- showed that fuzzy model out-competed the regression model in terms of reliability and applicability.

Development of Path Travel Time Distribution Estimation Algorism (경로통행시간 분포비율 추정 알고리즘 개발)

  • Lee, Young-Woo
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.19-30
    • /
    • 2005
  • The objective of this research is to keep track of path travel time using methods of collecting traffic data. Users of traffic information are looking for extensive information on path travel time, which is referred to as the time taken for traveling from the origin to the destination. However, all the information available is the average path travel times, which is a simple sum of the average link travel times. The average path travel time services are not up to the expectation of traffic information consumers. To improve provide more accurate path travel time services, this research makes a number of different estimates of various path travel times on one path, assuming it will be under the same condition, and provides a range of estimates with their probabilities to the consumers, who are looking for detailed information. To estimate the distribution of the path travel times as a combination of link travel times. this research analyzes the relation between the link travel time and path travel time. Based on the result of the estimation. this research develops the algorithm that combines the distribution of link travel time and estimates the path travel time based on the link travel times. This algorithm was tested and proven to be highly reliable for estimating the path traffic time.

A Model Development of Prove Cars for Travel Time Data Collection (교통정보 수집을 위한 프로브차량대수 모형 개발)

  • 고승영
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.177-185
    • /
    • 2002
  • 본 논문의 목적은 링크통행시간 자료를 수집하는 시스템에서 소요 프로브차량대수에 영향을 주는 요소들을 규명하고. 최적의 소요 프로브차량대수를 결정하는 모형을 개발하는데 있다. 자가용승용차, 택시, 버스, 택배차량 등 여러 종류의 차량들이 프로브차량으로 사용될 수 있다. 그러나 일정한 정확도 이상의 교통정보를 수집하기 위해서 얼마나 많은 프로브차량이 필요한지에 대한 연구는 그다지 깊이 있게 이루어지지 않았다. 적정 소요 프로브차량대수는 링크통행시간 자료수집 기술 수집대상 링크의 공간적 범위, 프로브차량의 종류 및 운행 특성, 자료수집 시스템의 신뢰도, 수집되는 자료의 정확도 등에 영향을 받게 된다. 소요 프로브차량대수를 결정하는 링크당 평균 통행시간 자료수, 프로브차량 밀도의 최소 확률, 그리고 자료 미수집링크의 허용비율의 3가지 결정기준이 정의되었다. 또한 이러한 결정기준에 대해 소요 프로브차량대수를 산출하는 모형이 개발되었다. 일반적으로 주기당, 링크당 평균 필요 통행시간 자료수$(d_R)$, 단위길이당 프로브차량의 대수 또는 밀도$(n_{min} or {\alpha})$, 일정 프로브차량밀도 이상의 확률($\beta$), 그리고 자료 미수집링크의 비율($\gamma$)이 클수록 소요 프로브차량대수는 증가한다. 민간 교통정보회사의 통행시간 수집시스템에서 소요 프로브차량대수를 산정하는 사례연구가 수행되었으며, 여러가지 조건에서 소요 프로브차량대수가 산출되었다.

Development of Queue Length, Link Travel Time Estimation and Traffic Condition Decision Algorithm using Taxi GPS Data (택시 GPS데이터를 활용한 대기차량길이, 링크통행시간 추정 및 교통상황판단 알고리즘 개발)

  • Hwang, Jae-Seong;Lee, Yong-Ju;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.59-72
    • /
    • 2017
  • As the part of study which handles the measure to use the individual vehicle information of taxi GPS data on signal controls in order to overcome the limitation of Loop detector-based collecting methods of real-time signal control system, this paper conducted series of evaluations and improvements on link travel time, queue vehicle time estimates and traffic condition decision algorithm from the research introduced in 2016. considering the control group and the other, the link travel time has enhanced the travel time and the length of queue vehicle has enhanced the estimated model taking account of the traffic situation. It is analyzed that the accuracy of the average link travel time and the length of queue vehicle are respectably both approximately 95 % and 85%. The traffic condition decision algorithm reflected the improved travel speed and vehicle length. Smoothing was performed to determine the trend of the traffic situation and reduce the fluctuation of the data, and the algorithms have refined so as to reflect the pass period on overflow judgment criterion.

A Travel Time Estimation Algorithm using Transit GPS Probe Data (Transit GPS Data를 이용한 링크통행시간 추정 알고리즘 개발)

  • Choi, Keechoo;Hong, Won-Pyo;Choi, Yoon-Hyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.739-746
    • /
    • 2006
  • The bus probe-based link travel times were more readily available due to bus' fixed route schedule and it was different from that of taxi-based one in its value for the same link. At the same time, the bus-based one showed less accurate information than the taxi-based link travel time, in terms of reliability expressed by 1-RMSE(%) measure. The purpose of this thesis is to develop a heuristic algorithm for mixing both sources-based link travel times. The algorithm used both real-time and historical profile travel times. Real-time source used 4 consecutive periods' average and historical source used average value of link travel time for various congestion levels. The algorithm was evaluated for Seoul urban arterial network 3 corridors and 20 links. The results based on the developed algorithm were superior than the mere fusion based link travel times and the reliability amounted up to 71.45%. Some limitation and future research agenda have also been discussed.

A Study of Measuring Traffic Congestion for Urban Network using Average Link Travel Time based on DTG Big Data (DTG 빅데이터 기반의 링크 평균통행시간을 이용한 도심네트워크 혼잡분석 방안 연구)

  • Han, Yohee;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.72-84
    • /
    • 2017
  • Together with the Big Data of the 4th Industrial Revolution, the traffic information system has been changed to an section detection system by the point detection system. With DTG(Digital Tachograph) data based on Global Navigation Satellite System, the properties of raw data and data according to processing step were examined. We identified the vehicle trajectory, the link travel time of individual vehicle, and the link average travel time which are generated according to the processing step. In this paper, we proposed a application method for traffic management as characteristics of processing data. We selected the historical data considering the data management status of the center and the availability at the present time. We proposed a method to generate the Travel Time Index with historical link average travel time which can be collected all the time with wide range. We propose a method to monitor the traffic congestion using the Travel Time Index, and analyze the case of intersections when the traffic operation method changed. At the same time, the current situation which makes it difficult to fully utilize DTG data are suggested as limitations.

Quality of Departure Time Based On-line Link Travel Time Estimates (구간통행속도 추정을 위한 고속도로 검지기자료 처리기법 개발)

  • Park, Dong-Joo;Kim, Jae-Jin;Rho, Jung-Hyun;Kim, Sang-Beom
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.145-154
    • /
    • 2008
  • The purpose of this study is to evaluate the quality of on-line departure time-based link travel time estimates. For this, accuracy (i.e. estimation error) and timeliness (i.e. degree of time lag) are proposed as MOE of the quality of on-line link travel time estimates. Then the relationship between quality of link travel time estimates and link length and level of congestion is analyzed. It was found that there is trade-off between the accuracy and timeliness of link travel time estimates. The estimation error was modeled to consist of two components: one is systematic error and the other is mean square error which reflects level of congestion. further, time lag was again segmented into three parts for the analysis purpose. There are minimum one, congestion-related one, and update interval-related one. From the real-world data using AVI system, it was revealed that regardless of the link length and level of congestion, 10 minutes of time lag occurs in general.

  • PDF

A data retrieval method for traffic information on the Jeju taxi telematics system (제주 택시 텔레매틱스 시스템에서의 교통정보 검색 방법)

  • Lee, Jung-Hoon;Park, Gyung-Leen
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.177-181
    • /
    • 2008
  • 본 논문은 제주 택시 텔레매틱스 시스템의 운영과정에서 축적되고 있는 각 택시들의 이동이력 데이터를 기반으로 관심구간의 통행속도에 관련된 필드들을 효율적으로 추출하는 기법을 설계하고 구현한다. 구현된 인터페이스는 도로네트워크 상에서 관심구간의 양끝점을 입력받아 $A^*$ 알고리즘을 수행하여 경로상에 포함된 각 링크를 결정한 후 해당 링크 아이디를 포함하는 질의문의 스켈리튼을 생성한다. 이 질의문을 수정하여 관심구간의 속도 레코드수, 속도 평균, 승객탑승시의 속도, 요일별 시간대별 평균 속도 등 다양한 정보를 체계적으로 검색할 수 있다. 제주시 연삼로 구간에 대한 시험적 검색 결과는 승객이 탑승한 경우 전체 경우 보다 $30{\sim}50%$ 정도의 보고수, $2{\sim}4$ kmh 빠른 통행 속도 등을 보이고 있으며 시간대별 통계는 요일별 통행속도 패턴의 변화를 정량화하고 있다.

  • PDF

Estimation of Bus Travel Time Using Detector for in case of Missed Bus Information (버스정보 결측시 검지기 자료를 통한 버스 통행시간의 산정)

  • Son Young-Tae;Kim Won-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.51-59
    • /
    • 2005
  • To improve the quality of bus service, providing bus ravel time information to passenger through station screen. Generally, bus travel time information predict by using previous bus data such as neural network, Kalman filtering, and moving average algorithms. However, when they got a difficulty about bus travel time information because of the missing previous bus data, they use pattern data. Generally, nevertheless the difference of range is big. Hence in this research to calculate the bus travel time information when the bus information is missed, use queue detector's data which set up in link. The application of several factors which influence in bus link travel time, we used CORSIM Version 5.1 simulation package.

  • PDF