기존에 건설된 교통시설의 운영효율을 극대화하기 위한 지능형 교통체계의 한 분야인 ATIS는 도로를 이용하는 통행자에게 편리성을 제공하는 동시에 도로를 효율적으로 운영할 수 있는 정보체계이다. ATIS 체계하에서 통행자에게 신뢰성 있는 정보를 제공하기 위해서는 교차로서의 회전에 의한 지체를 정확하게 반영함은 물론이고 실시간으로 변화하는 교통상황을 반영할 수 있는 동적인 최단경로 탐색 알고리즘이 요구된다. 하지만 기존에 발표된 동적인 최단경로 탐색 알고리즘은 회전에 대한 정보를 반영하지 못하며 정적인 최단경로 탐색 알고리즘은 회전에 대한 정보를 반영하지 못하며 정적인 탐색알고리즘 조차 회전에 대한 정보를 정확히 반영하지 못한다. 본 연구에서는 이러한 이유에서 알고리즘 내부에서 회전을 반영하기 위해 수정형 덩굴망 알고리즘의 표지기법을 이용하여 동적인 최단경로 탐색알고리즘을 개발하였다. 본 연구에서 개발한 동적 최단경로 탐색 알고리즘은 정적인 상태의 수정형 덩굴망 알고리즘에 시간에 따라 변화하는 교통상황을 반영하기 위해 시간에 대한 변수를 추가하였다. 이렇게 해서 알고리즘은 시간대별로 변화하는 통행시간을 고려하여 최단 경로를 탐색하게 되며 출발시점을 기준으로 표지를 설정하여 모든 앞선 시간에 대해 경로를 고려하도록 하였다. 매 단계에서 전 노드를 추적하여 회전에 관한 정보를 반영하도록 하였다. 따라서 본 연구에서 개발한 최단경로 탐색 알고리즘은 교차로에서의 회전에 대한 정보와 통행금지 등을 정확히 반영하며 실시간으로 변화하는 통행시간을 반영함으로써 신뢰성 있는 노선 정보를 ATIS를 이용하는 통행자들에게 제공하는데 활용될 수 있는 기법이다.적으로 세부적 차종분류로 접근한다.의 영향들을 고려함으로써 가로망 설계 과정에서 가로망의 상반된 역할인 이동성과 접근성의 비교가 가능한 보다 현실적인 가로망 설계 모형을 구축하고자 한다. 지금까지 소개된 가로망 설계모형들은 용량변화에 대한 설계변수의 형태에 따라 이산적 가로망 설계 모형과 연속적 가로망 설계모형으로 나뉘어지게 된다. 본 논문의 경우, 계산속도의 향상 측면에서는 연속적 가로망 설계 모형을 도입할 수 있지만, 이때 요구되는 도로용량이 이산적인 변수(차선 수)로 결정되어야만 신호제어 변수를 결정할 수 있기 때문에, 이산적 가로망 설계 모형이 사용된다. 하지만, 이산적 설계모형의 경우 조합최적화 문제이므로 정확한 최적해를 구하기 위해서는 상당한 시간이 소요되며, 경우에 따라서는 국부 최적해에 빠지게 된다. 이러한 문제를 극복하기 위해, 우선 이상적 모형의 근사화, 혹은 조합최적화문제를 위해 개발된 Simulated Annealing기법의 적용, 연속적 모형의 변수를 이산화하는 방법 등 다양한 모형들을 고려해 본 뒤, 적절한 모형을 적용할 것이다. 가로망 설계 모형에서 신호제어를 고려하기 위해서는 주어진 가로망에 대한 통행 배정과정에서 고려되는 통행시간을 링크통행시간과 교차로 지체시간을 동시에 고려해야 하는데, 이러한 문제의 해결을 위해서 최근 활발히 논의되고 있는 교차로에서의 신호제어에 대응하는 통행배정 모형을 도입하여 고려하고자 한다. 이를 위해서 지금까지 연구되어온 Global Solution Approach와 Iterative Approach를 비교, 검토한 뒤 모형에 보다 알맞은 방법을 선택한다. 차량의 교차로 통행을 고려하는 perf
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2008.10a
/
pp.177-181
/
2008
본 논문은 제주 택시 텔레매틱스 시스템의 운영과정에서 축적되고 있는 각 택시들의 이동이력 데이터를 기반으로 관심구간의 통행속도에 관련된 필드들을 효율적으로 추출하는 기법을 설계하고 구현한다. 구현된 인터페이스는 도로네트워크 상에서 관심구간의 양끝점을 입력받아 $A^*$ 알고리즘을 수행하여 경로상에 포함된 각 링크를 결정한 후 해당 링크 아이디를 포함하는 질의문의 스켈리튼을 생성한다. 이 질의문을 수정하여 관심구간의 속도 레코드수, 속도 평균, 승객탑승시의 속도, 요일별 시간대별 평균 속도 등 다양한 정보를 체계적으로 검색할 수 있다. 제주시 연삼로 구간에 대한 시험적 검색 결과는 승객이 탑승한 경우 전체 경우 보다 $30{\sim}50%$ 정도의 보고수, $2{\sim}4$ kmh 빠른 통행 속도 등을 보이고 있으며 시간대별 통계는 요일별 통행속도 패턴의 변화를 정량화하고 있다.
The Journal of the Korea institute of electronic communication sciences
/
v.9
no.12
/
pp.1373-1380
/
2014
In order to calculate accurate traffic and traffic speed, qualified and sufficient GPS data should be provided. However, it is difficult to provide accurate traffic information using restricted GPS data from probe vehicles because of communication costs. This paper developed a algorithm that recovers links omitted by restricted GPS data with topology information, and calculate traffic speed with original links and recovered links. T traffic information service of city with a new algorithm can provide more accurate traffic and traffic speed than the original system.
There are two goals in this paper. The one is development of existing CA(Cellular Automata) model to explain more realistic deceleration process to stop. The other is the application of the updated CA model to forecasting simulation to predict short term link travel time that takes a key rule in finding the shortest path of route guidance system of ITS. Car following theory of CA models don't makes not response to leading vehicle's velocity but gap or distance between leading vehicles and following vehicles. So a following vehicle running at free flow speed must meet steeply sudden deceleration to avoid back collision within unrealistic braking distance. To tackle above unrealistic deceleration rule, “Slow-to-stop” rule is integrated into NaSch model. For application to interrupted traffic flow, this paper applies “Slow-to-stop” rule to both normal traffic light and random traffic light. And vehicle packet method is used to simulate a large-scale network on the desktop. Generally, time series data analysis methods such as neural network, ARIMA, and Kalman filtering are used for short term link travel time prediction that is crucial to find an optimal dynamic shortest path. But those methods have time-lag problems and are hard to capture traffic flow mechanism such as spill over and spill back etc. To address above problems. the CA model built in this study is used for forecasting simulation to predict short term link travel time in Kangnam district network And it's turned out that short term prediction simulation method generates novel results, taking a crack of time lag problems and considering interrupted traffic flow mechanism.
VDF(volume-delay function) is one of the most important factor to improve the reliability of traffic demand estimation because it is for estimation of link travel time based on the traffic volume variation. Because VDF of link except for freeway is applied as the parameter of BPR(bureau of public road) of U.S., it causes to deteriorate the accuracy of traffic demand estimation. The purpose of this paper is to establish new parameter of VDF based on the real-surveyed traffic data in order to improve the problem of the existing VDF. We suggest the reclassification of road hierarchy, the approach of traffic survey, the estimating method of VDF parameter, and the improvements of new VDF application. The new VDF allows us to estimate more realistic traffic situation in parts of demand, travel time and path between origin-destination.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.3
no.1
s.4
/
pp.31-44
/
2004
The study of Estimation model for the short-term travel time prediction. There is a different solution which has predicted the link travel time to solve this problem. By using this solution, the link travel time is predicted based on link conditions from time to time. The predicated link travel time is used to search the shortest path. Before providing a dynamic shortest path finding, the prediction model should be verified. To verify the prediction model, three models such as Kalman filtering, Stochastic Process, ARIMA. The ARIMA model should adjust optimal parameters according to the traffic conditions. It requires a frequent adjustment process of finding optimal parameters. As a result of these characteristics, It is difficult to use the ARIMA model as a prediction. Kalman Filtering model has a distinguished prediction capability. It is due to the modification of travel time predictive errors in the gaining matrix. As a result of these characteristics, the Kalman Filtering model is likely to have a non-accumulative errors in prediction. Stochastic Process model uses the historical patterns of travel time conditions on links. It if favorably comparable with the other models in the sense of the recurrent travel time condition prediction. As a result, for the travel time estimation, Kalman filtering model is the better estimation model for the short-term estimation, stochastic process is the better for the long-term estimation.
이 연구는 버스정보 시스템 설계에 필요한 운행시격 결정과 통행시간 예측을 위한 알고리즘 개발을 다룬다. 운행시격 결정 문제는 버스와 같은 대중교통 수단을 운영하는데 중요한 요소 중에 하나이다. 기존 연구는 버스 운행비용과 승객비용의 합을 최소로 하는 운행시 격을 찾는데 초점을 두고 이다. 이때 승객비용이란 승객 대기비용과 승객 교통비용의 합으로 이루어진다. 그런데 우리나라와 같이 버스회사 수입이 전액 운행수입에만 의존하는 경우엔 이러한 접근 방식이 타당하지 않다. 기존의 방식과 다르게 승객비용으로 승객 이탈비용을 사용하여 버스의 최적 운행시 격을 구하는 것이 이 연구의 목적이다. 먼저 정류장이 하나인 경우에 대해 해석적 방법으로 풀고, 정류장이 여러 개인 경우에 대해서는 시뮬레이션 기법을 적용한다. 또한 이 연구는 신뢰성이 높고 정확한 통행시간 예측정보를 산출하기 위해 2 단계 예측 기법과 전문가시스템을 이용하는 자료융합 알고리즘을 개발한다. 정확한 정보를 제공하려면 교통정보 수집원을 통해 얻는 자료가 정확해야 하고, 또한 교통상황 변화에 따라 실시간으로 통행시간을 예측하는 것이 필요하다. 이 연구는 AVL(Automatic Vehicle Location)시스템을 이용한 버스정보시스템에서 실시간 데이터와 과거 데이터를 융합하여 통행시간을 예측하는 알고리즘을 개발한다. AVL 데이터를 수집하는 과정에서는 경제성을 고려하여 데이터를 수집한다. 그리고, 버스의 운행관리와 정확한 도착예정시간을 예측하기 위해 AVL시스템을 통해 얻은 데이터의 패턴을 분석하고 유고상황을 감지한다.
When it comes to the process of information storage, people are likely to organize individual information into the forms of groups rather than independent attributes, and put them together in their brains. Likewise, in case of finding the shortest path, this study suggests that a Hierarchical Road Network(HRN) model should be selected to browse the most desirable route, since the HRN model takes the process mentioned above into account. Moreover, most of drivers make a decision to select a route from origin to destination by road hierarchy. It says that the drivers feel difference between the link travel tine which was measured by driving and the theoretical link travel time. There is a different solution which has predicted the link travel time to solve this problem. By using this solution, the link travel time is predicted based on link conditions from time to time. The predicated link travel time is used to search the shortest path. Stochastic Process model uses the historical patterns of travel time conditions on links. The HRN model has compared favorably with the conventional shortest path finding model in tern of calculated speeds. Even more, the result of the shortest path using the HRN model has more similar to the survey results which was conducted to the taxi drivers. Taxi drivers have a strong knowledge of road conditions on the road networks and they are more likely to select a shortest path according to the real common sense.
This study developed an algorithm for real-time signal control based on the detection system that can collect sectional travel time. The signal control variable is maximum queue length per cycle and this variable has a sectional meaning. When a individual vehicle pass through the detector, we can gather the vehicle ID and the detected time. Therefor we can compute the travel time of an individual vehicle between consecutive detectors. This travel time informations were bisected including the delay and not. We can compute queue withdrawing time using this bisection and the max queue length is computed using the deterministic delay model. The objective function of the real-time signal control aims equalization of queue length for all direction. The distribution of the cycle is made by queue length ratios.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.