• 제목/요약/키워드: 리프오더링

검색결과 3건 처리시간 0.017초

DNA 마이크로어레이 데이터의 계층적 클러스터링에 대한 리프오더링 알고리즘 개발 (A Heuristic Leaf Ordering Algorithm for Hierarchical Clustering of DNA Microarray Data)

  • 여상수;이정원;김성권
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (A)
    • /
    • pp.706-708
    • /
    • 2002
  • DNA 마이크로어레이 실험으로 나온 데이터들을 클러스터링하는 것은 유전자의 기능과 유전자의 네트워크를 파악해 나가는데 도움을 주게 된다. 계층적 클러스터링(hierarchical clustering) 방법은 그러한 실험 분석에서 가장 보편적으로 사용되는 방법이다. 본 논문에서는 계층적 클러스터링을 통해서 나온 결과 트리에 대해서, 트리의 리프 노드들을 재배열함으로써, 인접한 리프 노드들간의 거리의 종합이 최소가 되도록 하는 문제인 리프오더링 방법을 다루었고, 새로운 리프오더링 알고리즘을 제안하였다. 그리고, 이를 포함한 여러 리프오더링 방법들에 대한 실험 및 생물학적인 분석을 하였다.

  • PDF

DNA 마이크로어레이 데이타의 클러스터링 알고리즘 및 도구 개발 (Development of Clustering Algorithm and Tool for DNA Microarray Data)

  • 여상수;김성권
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권10호
    • /
    • pp.544-555
    • /
    • 2003
  • DNA 마이크로어레이 실험으로 나오는 데이타는 아주 많은 양의 유전자 발현 정보를 담고 있기 때문에 적절한 분석 방법이 필요하다. 대표적인 분석 방법은 계층적 클러스터링(hierarchical clustering) 방법이다. 본 논문에서는 계층적 클러스터링의 결과로 나오게 되는 덴드로그램(dendrogram)에 대해서 후처리(post-Processing)를 시행함으로써 DNA 마이크로어레이 데이타 분석을 더 용이하게 해주는 리프오더링(leaf-ordering)에 대해서 연구하였다. 먼저, 기존의 리프오더링 알고리즘들을 분석하였고, 리프오더링 알고리즘의 새로운 접근 방식을 제안하였다. 또한 이에 대한 성능을 실험하고 분석하기 위해서 계층적 클러스터링과 몇 가지 리프오더링 알고리즘들, 그리고 제안된 접근 방식을 직접 구현한 HCLO (Hierarchical Clustering & Leaf-Ordering Tool)에 대해서 소개하였다.

유전자 발현 데이터에 대한 클러스터링과 리프오더링 연구 (Clustering and Leaf Ordering for Gene Expression Profiles)

  • 여상수;이정원;김성권
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.736-738
    • /
    • 2002
  • 계층적 클러스터링(hierarchical clustering)은 유전자 발현 데이터를 분석할 때 일반적으로 사용하는 방법이다. 계층적 클러스터링의 결과물은 유전자 발현 데이터의 덴드로그램이다. 이 덴드로그램에서 인접한 리프 노드들간의 유사도는 높아지게 하고 멀리 떨어진 노드들간의 유사도는 낮아지게 하기 위해서, 리프 노드들을 재배열하는 과정을 리프오더링이라고 한다. 본 논문에서는 전체 리프 노드들을 대상으로 하는 리프오더링 알고리즘들을 변형하여 각 클러스터별로 리프오더링을 하는 접근방식을 제안하고, 기존의 리프오더링 알고리즘을 사용했을 때의 결과와 제안하는 접근방식을 사용했을 때의 결과를 비교 분석하였다.

  • PDF