• Title/Summary/Keyword: 리포좀 크기제어

Search Result 3, Processing Time 0.02 seconds

Temperature-sensitive Liposomes Modified with Poly(N-isopropylacrylamide-co-acrylamide) (Poly(N-isopropylacrylamide-co-acrylamide)로 변형된 온도민감성 리포좀)

  • Hee Dong Han;Sung Soo Kim;Ho Suk Choi;Byung Cheol Shin
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.257-264
    • /
    • 2003
  • This study has investigated the temperature-sensitive liposomes, which release anticancer drug(doxorubicin) at the hyperthermia temperature$(~40^{\circ}C)$. The temperature-sensitive liposomes were modified with a copolymers of N-isopropylacrylamide(NIPAAm) and acrylamide(AAm), which exhibit a lower critical solution temperature (LCST) at the hyperthermia temperature. The release of doxorubicin from the modified liposomes was determined by measuring the fluorescence intensity with changing temperature and time. The release of doxorubicin from liposomes modified with poly(NIPAAm-co-AAm) copolymer was increased significantly, because poly(NIPAAm-co-AAm) could undergo the conformational transition in the narrow hyperthermia temperature region$(~40{\pm}2^{\circ}C)$. Moreover, we observed that doxorubicin released from liposomes within 5 minutes, and the size of modified liposomes was 120~170 nm. In this study, we have prepared temperature-sensitive liposomes which could be controlled by temperature. They can be applied in the field of a drug delivery system for tumor targeting by temperature control.

Formation and Size Control of Polydiacetylene Sensor Liposome Using Hydrodynamic Focusing (유체집속효과를 이용한 폴리다이아세틸렌 센서 생성 및 크기 제어)

  • Kim, Gang-June;Song, Si-Mon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2688-2691
    • /
    • 2008
  • This study addresses a microfluidic method to uniformly form diacetylene (DA) liposomes and control their size. DA liposomes are biochemical sensor materials with a unique property such that when they are polymerized to polydiacetylene (PDA) they exhibit non-fluorescent blue to fluorescent red phase transition upon chemical or thermal stress. The liposome size and distribution are important because they significantly affect the phase transition. So far, DA Liposomes, have been prepared by mixing of bulk phases leading to heterogeneous, polydisperse distribution in size. Therefore, additional post-processes are required such as sonication or membrane extrusion to obtain an appropriate size of liposomes. Here, we report a novel strategy using a microfluidic chip and hydrodynamic focusing to form DA liposomes and control their size. Preliminary results obtained by scanning electron microscope (SEM) and dynamic light scattering (DLS) show that the microfluidic strategy generates more monodispersed liposomes than a bulk method.

  • PDF

Surface Chemistry in Biocompatible Nanocolloidal Particles (생체 적합한 나노입자와 계면화학)

  • Kim Jong-Duk;Jung Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.295-305
    • /
    • 2004
  • Colloid and surface chemistry have been focused on surface area and surface energy. Local surface properties such as surface density, interaction, molecular orientation and reactivity have been one of interesting subjects. Systems of such surface energy being important would be listed as association colloid, emulsion, particle dispersion, foam, and 2-D surface and film. Such nanoparticle systems would be applied to drug delivery systems and functional cosmetics with biocompatible and degradable materials, while nanoparticles having its size of several nm to micron, and wide surface area, have been accepted as a possible drug carrier because their preparation, characteristics and drug loading have been inves-tigated. The biocompatible carriers were also used for the solubilization of insoluble drugs, the enhancement of skin absorption, the block out of UV radiation, the chemical stabilization and controlled release. Nano/micro emulstion system is classified into nano/microsphere, nano/microcapsule, nano/microemulsion, polymeric micelle, liposome according to its prep-aration method and size. Specially, the preparation method and industrial applications have been introduced for polymeric micelles self-assembled in aqueous solution, nano/microapsules controlling the concentration and activity of high concen-tration and activity materials, and monolayer or multilayer liposomes carrying bioactive ingredients.